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Comment

Duane Steffey and RBbert E. Kass

Dr. Robinson’s well-written article provides a va-
riety of perspectives on the general linear model
and its applications. Particularly welcome are the
examples of Section 6 illustrating the widespread
utility of these models. We limit discussion here to
three main points. First, further details are pro-
vided on approximate Bayesian methods for infer-
ence about unit-specific parameters (“random” ef-
fects). Next, we amplify Dr. Robinson’s comment
on the often close agreement between Bayesian and
frequentist inferences. Specifically, we give an ap-
proximation to the variance of the marginal poste-
rior distribution of a unit-specific parameter and
conjecture that the expression may also be justified
on frequentist grounds as an approximation to the
sampling variance of the BLUP estimator. Finally,
we discuss the desirability of using all relevant
information and mention some possible mecha-
nisms for incorporating prior knowledge about ani-
mal breeding into the general linear model.

1. APPROXIMATE BAYESIAN INFERENCE

We here consider the marginal posterior distribu-
tion of a unit-specific parameter and provide a
rather general variance approximation that satis-
fies the often-identified need (e.g., noted by Robin-
son in Section 5.6) to account for the uncertainty in
estimating the common dispersion parameters. We
begin by rewriting Robinson’s model (1.1). Switch-
ing to a formulation similar to that of Laird and
Ware (1982), we consider the general linear model
in which there are k experimental units and, for
the ith unit,

Yi = Xlﬁ + Ziui + ei.

Here, Y; is an n; X 1 vector of responses, 8 is a
p X 1 vector of unknown population parameters
and X, is a known n; X p matrix linking g to Y;.

In addition, u; is a g X 1 vector of unknown indi-
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vidual effects, Z; is a known n; X ¢ matrix linking
u;to Y; and e; is an n; X 1 vector of random errors.
The vectors e;, i = 1,..., k are assumed to be inde-
pendent and normally distributed with E(e;) = 0
and VAR(e;) = R,(0). The vectors u; are taken to
be independent (of each other and of the e;) and
normally distributed with E(u;) = 0 and VAR(u;)
= G(9). (We suppress the vector # in the subse-
quent discussion.) That is, the model has the struc-
ture

) Y,|8,u;,0 ~ Normal( X;8 + Z;u,, R;)
u;|6 ~ Normal(0, G),

so that given 8 and 6 the vector pairs (Y, u;) are
conditionally independent for i=1,...,%k. Kass
and Steffey (1989) refer to models characterized by
this structure as conditionally independent hierar-
chical models (CIHMs).

For example, in the context of Robinson’s animal
breeding problem (Section 1), Y; is the vector of
first lactation yields for dairy cows from the ith
sire. In this case, k = 4, p = 3, and ¢ = 1. Letting
i = 4 identify Sire D, we have n, = 5 and
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If an improper uniform prior is specified for 8 and
integration with respect to B is performed, the
posterior distribution of u; given y; and 6 is Nor-
mal with

E(ui| yi’o) = GZiTPiyi
VAR(u;| y,,0) = (G~' + 278,2;) ",

where
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with V, = R, + Z,GZT. Approximations to the pos-
terior mean and variance of u; given y =
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