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case prior opinion may be incorporated infor-
mally, subsequent to the analysis. In any case,
the distribution assigned to 8 and 6 should be
regarded as part of the model.

5. The posterior distribution of w (i.e., the condi-
tional distribution of w given y) may suggest

suitable point and interval predictors. With
the possible exception of the term posterior
distribution, which might be used in referring
to any distribution that is conditional on y,
the use of Bayesian jargon should be avoided.

Comment: The Kalman Filter and BLUP

James C. Spall

1. INTRODUCTION

Professor Robinson has given a wide-ranging ac-
count of best linear unbiased prediction with an
impressive array of examples and applications. In
this discussion, however, I will restrict my atten-
tion to issues regarding the Kalman filter and
BLUP.

For ease of discussion, let us restate the random
effects model in state-space form as given in Robin-
son, Section 6. The unobservable random effects
(state) vector, u,, evolves according to

(1.1a)

where w, is a noise term with mean 0 and covari-
ance matrix W,, and G, is the state transition
matrix. The second equation in the model relates
the state vector to the vector of observables y,:

(1.1b)

where v, is a noise term with mean 0 and covari-
ance matrix V,, and F, is the measurement matrix.
Equations (1.1a,b) can be expressed in the random
effects model form of Robinson by writing

u,=Gu,  +w,u,=0,t=1,2,...,n,

¥ = Fu,+ v,

y=2Z2Zu + e,
where y = (y7,5%,...,y0)T, Z =Dblock diaglF,,
F,,...,F), u=@?, uf,...,u")?, and e = (v7,
vZ,...,vI)T. The covariance matrix for u,G in the
notation of Robinson, is a function of G, and W,
t=1,2,...,n. The structure of this covariance ma-

trix allows for recursive algorithms of the Kalman
filter /smoother form to be used to form BLUP esti-
mates for the components of u. Incidentally, a
slightly confusing point in Robinson, Subsection
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6.4, is that it is a Kalman smoother, not filter, that
produces the BLUP estimate of u based on data y.
What Robinson had in mind, I presume, is the
common problem where one is interested in an
estimate of u, based only on data through time ¢
(not through some later time); the Kalman filter, of
course, is used for this problem. For the remainder
of this discussion, I will assume that the filtering
problem is the one of interest (although virtually
all of the ideas would also apply in the smoothing
problem).

A couple of other points are worth noting here.
First, Sallas and Harville (1988) address a slightly
broader problem than that considered above and by
Robinson: namely the estimation of random and
fixed effects via Kalman filter techniques. Second,
as noted by Robinson, the Kalman filter is not
entirely due to Kalman. The filter equations were
essentially derived by others prior to Kalman, but
it was Kalman who crystallized much of the think-
ing in the area and discovered several key relation-
ships to certain systems-theoretic concepts (see
Spall, 1988, for further discussion of this).

In the next two sections, I will discuss two prob-
lems that were given fairly light treatment in the
Robinson paper, but that are important from the

‘point of view of a practitioner. Section 2 describes

some problems associated with constructing uncer-
tainty bounds for the filter estimation error &, — u,
when the noise terms have an unknown distribu-
tion (as in the general setting of Robinson, equa-
tion 1.1). Section 3 elaborates on the brief discus-
sion of Robinson regarding uncertainty in the model
parameters 6.

2. UNCERTAINTY BOUNDS FOR i, — u, IN
DISTRIBUTION-FREE SETTINGS

Robinson presents the formula for the covariance
matrix of the BLUP estimation error in Section 1 of
his paper, and it is well known that this covariance
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