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P. JAGERS

Comment: The Geographical Structure of

Populations

Stanley Sawyer .

Peter Jagers has given an excellent description of
population models of branching process type and of
how easy it is to obtain information about popula-
tion structure in branching process models. Al-
though Jagers has not done so explicitly, one can
handle geographical structure as well by including
the position of an individual in its “genotype.”
Then a movement or “migration” is modeled as a
death together with the birth of an offspring at a
nearby location, and in this way one can model the
geographical distribution of a population as well as
geographically dependent “life patterns.” It is use-
ful to use the term “branching random field” (BRF)
for a branching-process description of a population
distributed in space.

Perhaps the main reason why branching process
models are not more widely used is the assumption
that individuals (and their offspring) must develop
independently of their sibs (and their offspring).
Thus there is no easy way to model interactions
between sibs, for example those caused by the finite
carrying capacities of environments. When think-
ing about population models in biology, I like to
think about the distribution of rabbits in my subur-
ban neighborhood. Most yards in my area have
enough shrubbery to easily support 5-10 rabbits. If
the number of rabbits in any yard grew much
larger than that, the homeowner (or local preda-
tors) would take an interest, and in any event there
may not be enough forage. Occasionally there are
no rabbits, due perhaps to either an especially cold
winter or to a visit by an especially effective preda-
tor. The yard will then remain empty until it is
recolonized from the outside.

While local extinction and recolonization are nat-
urally modeled in a branching random field, the
effect of local carrying capacity is not. Local popu-
lation bursts of arbitrarily large size can occur in
branching models. The purpose of this comment
will be to try to compare their effect on the distri-
bution of populations, in comparison with models
which have strict local carrying capacities built in.
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The conclusion will be that the branching random
field is a good approximation for some purposes and
might be preferable in those cases because of the
ease of analysis. A second conclusion will be that
the instabilities associated with critical branching
random fields (i.e., Malthusian parameter « = 0)
may not be as bad an approximation to nature as
one might otherwise suspect.

Migration models in the genetics and ecological
literature are often versions of the “stepping stone”
model of Kimura and Malécot (see, e.g., Nagylaki
1986, 1989; Sawyer, 1976a). Stepping stone models
assume a fixed array of “colonies” and are essen-
tially branching random fields conditioned on the
events that each colony always has a fixed prede-
termined size. One is then interested in the distri-
bution of similarity as a function of distance, or in
the distribution of subtypes within the larger popu-
lation. In the sense of a constraint on total popu-
lation size, the “stepping stone” analog of the
Galton-Watson process without geographical struc-
ture is the Wright-Fisher model. For definiteness,
we consider a stepping stone model whose colonies
are the d-dimensional lattice J¢ with nearest-
neighbor migration but positive probability of stay-
ing put, and assume the simplest type of branching
random field for comparison: (a) there is only one
type, (b) surviving individuals die and have off-
spring at constant Poisson rates, (c) individuals are
distributed in d-dimensional Euclidean space R¢,
(d) the “migration” process is Brownian motion
(i.e., individuals follow independent Brownian mo-
tion processes between birth events) and (e) the
initial state of the branching random field is a
Poisson random field with mean density r > 0.

Suppose we are interested in the distribution of
the surviving offspring of a typical individual whose
offspring have survived. Equivalently, assume that
the individuals are initially of distinct types, and
consider the size and spatial distribution of a typi-
cal surviving type at time ¢. For a stepping stone
model, this can be measured by the probability
I(¢,0, x) that two individuals chosen randomly at
time ¢, one at 0 and one at x, belong to the same
subtype. Then for dimensions d < 2

(1) lim I(¢,0,x) =1 all xeJ% d <2
t—oo
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