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approximation, we need n operations to discretize
the data into Nz nonempty bins. Thus,
the numerical effort for this method is of order
O(n + NgM).

Of course, the WARPing method introduces a
discretization bias. The bias may be reduced by
joining the obtained discrete step function (see
(3.2)), via a polygon. Breuer (1990) has computed
for m(x) = x sin(27x) + 3x and uniform design the
MSE as a function of x for both the 7y estimator
and the WARPed estimator 7, x.

In Figure 5, the discretization bias is seen to be

Comment

Jeffrey D. Hart

Chu and Marron have provided us with a clear
and thorough account of the relative merits of eval-
uation and convolution type kernel regression
estimators. One is left with the impression
that neither type of estimator is to be preferred
universally over the other. We learn, for example,
that the weights of the convolution estimator some-
times have the unsettling behavior exhibited in
Figures 6b and 7 of Chu and Marron. The authors
make it clear that there are a number of factors,
including type of design (fixed or random), design
density and nature of underlying regression func-
tion, that need to be considered before choosing an
estimator type. Having reading their article, I now
have a slight preference for 7y over m in the
random design case, at least in the absence of any
information about the design density or regression
curve. When the design points are nonrandom and
evenly spaced, I prefer ., since its convolution
form appeals to me, and since boundary kernels are
easy to construct with i, (see Gasser and Miiller,
1979). Below I will mention a modification of .
that I feel is a viable competitor of 725 even in the
random design case.

The authors’ point about the down weighting
phenomenon of the convolution estimator is cer-
tainly well taken. However, I would like to ques-
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quite drastic, although we gained in speed of com-
putation. The linear interpolant has a much better
bias behavior, as is seen in Figure 6. For this
estimator conservative bounds for the numerical
discretization error and its effect on MSE(x) can be
given and are displayed in Figure 6 as long dashed
lines.
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tion an aspect of their comparison of the variances
of my and M. As the authors note in Section 4,
the biases of the two estimators are not compara-
ble, the bias of /5 being smaller in some cases and
that of M, smaller in other cases. It follows that
“good” bandwidths for the estimators will gener-
ally be different. Why then is it sensible to compare
Var(rg) and Var(s) at the same value of A?

A little-used but informative way of comparing
the errors of my and M is to consider the limiting
distribution of

| rg(x) — m(x)]

@) [e(z) ~ m()]

Unlike an MSE comparison, this approach takes
into account the joint behavior of the two estima-
tors. Suppose that Chu and Marron’s assumptions
(A.1)-(A.5) hold and that the design density is
U(0, 1). Suppose further that the bandwidths of
and 71, minimize their respective MSEs. Then it
can be shown that, for each x, the ratio (1) con-
verges in distribution to

o ()

3
as n — o, where (Z;, Z,) have a bivariate normal
distribution with Z, ~ N(0,1), Z, ~ N(0,1) and

Corr(Z,, Z,)

= (;)3/5/ K(z)K((§)1/5z) dz//K2=pK.
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