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Theo Gasser, Christine Jennen-Steinmetz and Joachim Engel

Nonparametric curve estimation is coming of age,
and it is thus timely to study the merits of various
approaches. Two weighing schemes have been pro-
posed in the kernel estimation literature, called
“evaluation weights” and “convolution weights”
by Chu and Marron. The goal of their paper is to
give a balanced discussion of their merits, based on
two complementary philosophies P1 and P2. We
feel that the paper falls short of presenting a bal-
anced discussion and often disregards philosophy
P1, that is, looking for structure in a set of num-
bers. For many years the evaluation weights (due
to Nadaraya and Watson) have been studied pri-
marily for random design, the convolution weights
for fixed design. Random design is defined and
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treated adequately by the authors, while fixed de-
sign is represented by rather peculiar examples
(see below). As is common (see, e.g., Silverman,
1984), we define a regular fixed design as x; =
F~Y(i — 0.5)/n), f = F’, where F is some distribu-
tion function with density f. Under standard as-
sumptions, the asymptotic bias and variance for the
two weighting schemes are as in Table 1, where

" My(K) = [ u’K(u) du and V(K) = [ K()® du.

VARIANCE

The factor C in the variance of the convolution
estimator is 1 for fixed and 1.5 for random design.
Thus, we have an increase in variance for convolu-
tion weights with respect to the random design
only; variances are asymptotically identical for reg-
ular fixed design. There is one fixed but not regular
design of importance, that is, when we have multi-
ple points, for example, due to rounding. It is easy
to modify convolution weights for this design appro-
priately, and this has been done in our programs.

We are puzzled by the frequent use of the word
efficiency in Section 3, when in fact only variance is
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