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Comment: Monitoring Convergence of the Gibbs
Sampler: Further Experience with the Gibbs

Stopper

Lu Cui, Martin A. Tanner, Debajyoti Sinha and W. J. Hall

1. INTRODUCTION

Whether one follows the “multiple-run” or the “one
long run” approach to implementing Markov chain
methods, diagnostics for monitoring convergence will
be of value. The purpose of this note is to provide
further illustration of one such diagnostic, the Gibbs
Stopper, originally presented in Ritter and Tanner
(1992) in the multiple run context.

The basic idea behind the Gibbs Stopper is to assign
the weight w to the vector 8 = (0, . . . , 64), which has
been drawn from the current approximation to the
joint density g; via

w(e) — q(aly ceey adIY)’
gi(01,. ey 0d)
where q(6y, . . ., 04|Y) is proportional to the posterior
density p(6y, . . ., 64Y). As g; converges toward p(6;,

. ««., 04]Y), the distribution of the-weights (associated
with values of 8 drawn from g;) should converge toward
a spike distribution. We have found this observation
useful in assessing convergence of the Gibbs sampler,
as well as in transforming a sample from g; into a
sample from the exact distribution; see Ritter and
Tanner (1992). Historically, the idea of using impor-
tance weights to monitor convergence of the data aug-
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mentation algorithm was first presented in the
Rejoinder of Tanner and Wong (1987) and illustrated
in Wei and Tanner (1990).

To write down the functional form for g; for the Gibbs
sampler, we introduce notation following Schervish and
Carlin (1990). Let p™6) = p(6i|6s, . . . , Oi=1, 41, . . .,
04, Y). For two vectors @ and @', define for each i <d,
0(1") = (01, e .oy 0,', 0','+1, e eey 0ld) and 0“” = . As noted
in Schervish and Carlin (1990), if g; is the joint density
of the observations sampled at iteration i, then the
joint density (gi+1) of the observations sampled at the
next iteration is given by

d
(1) / K(0',0)g40") dA0"),  K(6",6) = ] p™(6Y)
i=1
[see also Tanner and Wong (1987) and Liu, Wong and

Kong (1991, 1991a)]. One may approximate the integral
in (1) via the method of Monte Carlo. In particular,

given the observations 6', 6% . .., 6™, use the Monte
Carlo sum
(@) LS kie,0

m =

to approximate gi+1(6). Ritter and Tanner (1992) sug-
gest using 6 values from independent chains. In this
note, we use successive 0 values from one chain to
construct the Monte Carlo sum (2). Note that construc-
tion of (2) requires the normalizing constants (or good
approximations to the normalizing constants) for the
conditional distributions. Also note that we are exam-
ming, through p(0k|01, e ey ﬂk_l, 0k+1, e ooy 0d, Y), the
first component of each @ vector along with components
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