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out that the solution yields the constrained empiri-
cal Bayes estimates obtained by Cressie (1986), al-
though no Bayes optimality criterion is invoked by
the authors.

The multivariate version of (10) is

(11) O=A6+b,

where A is an m x m matrix and b is an m x 1 vector.
Upon specifying that E(9) = E(6) and var(d) =var(6),
Cressie (1990b, 1992) obtains a multivariate con-
strained estimator. In the notation of (1), 6 = g,
EO0)=X3,0=y,E(y |0 =0, var(y | ) =%, and
var(y) = ¥ + . Then the multivariate constrained
estimator for model (1), analogous to Spjgtvoll and
Thomsen’s, is given by (11), where

(12) A=TY(T +)"1/2
and
(13) b={I-T2Z+D)"V2}X5.

Notice that § given by (11), (12) and (13) does not
shrink y towards X3 as far as the Bayes estimator
6* does (where A=T(Z +I')"! and b = (I — A)XP).
In an elegant paper, Ghosh (1992) derives a mul-
tivariate constrained Bayes estimator for model (1):

(14) 0% ={a+(1-a)11'/m}6",

where

1/2

)

m -1
a= [trace{([ - 11'/m)V} (Z(e; - ,;*)2) +1

i=1

0" =E@ |y ={TE+ Dy +I -T(E+D)1}X8,

Comment
p. Holt

The paper by Ghosh and Rao is a valuable sum-
mary of recent developments using empirical Bayes
and hierarchical Bayes methods for making small
area estimates. The need for methods which make
provision for local variation while pooling informa-
tion across areas is well established. The review
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V = var(d | y) = T{I - (T + D)~ 1}T.

The vector #® has the property that it minimizes
E(X,(6; — ¢,)? | y) with respect to ¢ and subject to
conditions that match first and second sample mo-
ments of ¢ with those same moments of 6 conditional
on y. Cressie’s proposal given by (11), (12) and (13)
does not invoke any optimality conditions and so
is likely to be less efficient than Ghosh’s estimator
(14).

Constrained Bayes estimation for more general
models, such as GLMs, is presented by Ghosh
(1992), although from an essentially univariate
point of view. Our earlier comment, that we do not
have flexible ways to model lack of independence in
nonlinear, nonnormal models, is equally appropriate
here.

Finally, we agree with the authors’ comment
about the importance of small area estimation in
medical geography. A good source for recent re-
search in this area is the May 1993 Supplement
Issue of the journal Medical Care (Proceedings of
the Fourth Biennial Regenstrief Conference, “Meth-
ods for Comparing Patterns of Care,” October 27—
29, 1991). We are working on incorporating spatial
variation and dependence into statistical methods
for these and other small area estimation problems.

ACKNOWLEDGMENT

Partial support came from the Office of Naval Re-
search Grant N00014-93-1-0001, NSF Grant DMS-
92-04521 and the National Security Agency Grant
MDA904-92-H-3021.

is a thorough appraisal of the methods and their
properties, and the numerical results reinforce ear-
lier results which demonstrate that these methods
are preferable to others such as synthetic estimation
and sample size dependent estimation.

The value of these approaches is not simply in
their ability to provide point estimates for each
small area which, on average, have better precision.
A very important additional factor is that a measure
of precision (MSE) and an estimator of this can be
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