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Comment
Wing Hung Wong

The authors have presented a clear and elegant
exposition of the MCMC methodology, illustrated
by three substantial applications. Their descrip-
tions of the background of the applications and
insightful discussions of the modelling and compu-
tational issues will be helpful to all seriously inter-
ested in Bayesian computation.

A QUESTION ON THE CHOICE OF PRIORS

There is quite a bit of arbitrariness in the choice
of the prior models. For instance, in the prostate
cancer example, the scale parameters are assumed
to have independent proper gamma distributions.
Thus, for each scale parameter one needs to intro-
duce two free constants to describe the gamma
prior. Why is it necessary to have this extra level of
randomness? On the other hand, the parameter &
in the pairwise-difference prior (6.1) in the nuclear
medicine imaging example is treated as a free con-
stant and given the value 2. It seems to me that the
role of this latter parameter is quite similar to the
scale parameters in the prostate cancer example,
namely, to control the strength of local regularity in
space or time. Why should it be given a fixed value
in this case?

COMMENTS ON NUCLEAR MEDICINE
IMAGING

(a) Would the authors please discuss why it is
controversial to use Bayesian modelling in measur-
ing uncertainty in image analysis? I am very inter-
ested in further elaborations of their position on
this issue.

(b) In Section 6.1, it was remarked that the “point

spread function” is often known from calibration

experiments. Is this the case for the actual study in
Section 6.4? The “raw data” presented there consist
of a 256 X 256 image where the photon counts in
individual pixels vary between 0 and 93. The direct
use of the Poisson model of Section 6.1 would re-
quire us to assume, in effect, that there are 256 X
256 independent counting elements. In actuality,
the counting elements in a traditional gamma cam-
era are photomultiplier tubes whose diameters typ-
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ically are of the order 1-3 cm. Each scintillation
event would generate many thousands of light pho-
tons collected by several nearby photomultiplier
tubes, and the location of the scintillation event is
“computed” by the circuitry based on the relative
strength of the signals from the several tubes. In
principle, the signals from the individual tubes are
available and the “computation” of the position of
the scintillation event would then become a statisti-
cal inference problem! In many cases, it may be
reasonable, as a first approximation, to use a
Gaussian point spread function with a suitable
standard deviation to represent the uncertainty in
this measurement of the scintillation position. This
depends on the thickness of the scintillating crys-
tal, collimator design and the sizes of the photomul-
tiplier tubes, and I do not necessarily disagree with
the authors’ treatment in this example. I merely
wish to point out that statisticians should not auto-
matically leave the issue of the point spread func-
tion to the medical physicists. This is particularly
true in more sophisticated imaging modalities such
as SPECT and PET. For example, for the 510-keV
gamma photons in PET, the effect of Compton scat-
tering would contribute much more significantly to
the blurring. Since part of the scattering occurs
inside the body, it is not possible to determine the
exact effect of this by calibration experiments.

SEQUENTIAL BUILDUP BY MARKOV
CHAIN MONTE CARLO

In Section 7, the authors presented a useful up-
date on promising recent developments on the con-
struction of efficient Monte Carlo algorithms. I will
supplement their discussion by venturing to outline
an idea which I hope will be helpful in this regard.
Let us first consider the method of simulated tem-
pering (Marinari and Parisi, 1992) in more detail.
Let f(z) be an unnormalized density on a space Z,
that is, f(2z) is nonnegative but needs not integrate
to 1. To sample from f( ), Marinari and Parisi
propose to create a Markov chain with an enlarged
state vector (%, z), where z takes value in Z and &
ranges from 1 to m. For any k, z is updated
according to a transition kernel which has an in-
variant density proportional to the 1/7, power of
f(). For example, the update may be one complete
Gibbs sampling scan over the components of z.
After each update of z, £ may be moved to the next
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