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Comment

G. O. Roberts, S. K. Sahu and W. R. Gilks

We congratulate the authors on a magnificent
paper, providing a nicely paced introduction to
Markov chain Monte Carlo and its applications,
together with several new ideas. In particular the
class of pairwise difference priors is bound to have
a substantial impact on future applied work. Other
ideas given less prominence in the paper are also
valuable, for example, the construction of simulta-
neous credible regions based on MCMC output.
There are several issues which we wish to comment
on in detail.

MCMC ON IMPROPER POSTERIORS

We would like to consider the issues raised by
possible impropriety of posterior distributions and
the use of MCMC on such target posteriors. For
instance, consider the logistic regression model in
Section 4. The model specification in (4.1) together
with the postulated priors make the model uniden-
tifiable. So the resulting posterior distribution is
improper. If the posterior is improper no notion of
convergence in distribution is meaningful for the
associated MCMC. However, we may ask if the
associated sequence of draws of a lower-dimen-
sional vector converges in distribution. When are
we allowed to use samples from this nonconvergent
MCMC to infer about our “identifiable” parameters
of interest? To date there is no literature address-
ing all of these concerns in total generality, but in
the context of generalized and normal linear mod-
els some of these issues have been addressed in
Sahu and Gelfand (1994).

Improper Posteriors from Generalized Linear
Models

Consider the usual linear model Y =X + &,
where Yis n X1, XisnXp(n>p),Bis p X1
and € ~ N(0, 02I) with o2 known. Let X have
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column rank r < p. Assuming a flat prior for B, the
posterior for B is improper. However, the complete
conditional distributions w( 8| B;, j # I, Y) are all
proper, so the Gibbs sampler can be implemented.
Note also that Xp has a singular normal posterior
distribution given by

m(XBIY) = N(X(XTX) X"Y,

o2X(XTX) XT).

Now we can choose a full-rank matrix R, p — r
X p, whose rows are linearly independent of the
rows of X, that is, Rp is a maximal set of nones-
timables. Suppose we take as a prior w(RB) =
N(0,V), where V is a positive-definite matrix of
appropriate order, and retain a flat prior for Xp.
Then we can show that B has a proper posterior
distribution given by

7(Bly) = N((c"2X"X + R"V-'R) ' X"y/0o?,
(c72X"X + RTV-'R) ).

It is easy to check that m(XB[Y) is exactly the same
singular normal distribution as in (1). Further, the
posterior of R is the same as the prior, and R is
a posteriori independent of XB. So any proper prior
for RB does not alter the posterior for XB but
makes the posterior distribution for B proper. If the
rank of R is less than p — r, we do not have a
proper posterior for B. Thus the propriety of the
posterior depends upon the propriety of the nones-
timables Rf.

Much of the above can be extended to the case of
structured generalized linear models (Sahu and
Gelfand, 1994). With unknown scale parameters,
checking propriety of posterior distributions is
somewhat complex. See Hobert and Cassella (1993),
Ibrahim and Laud (1991) for more in this regard.

(D

Implications for MCMC

For the linear models discussed above, there are
several possible choices for the prior specification of
the nonestimables RB. We consider three possibili-
ties and examine the consequences for MCMC.

1. We could use a degenerate point prior, for exam-
ple, RBp =0, which is equivalent to putting
“usual constraints” in the classical analysis of
linear models. Then we arrive at a lower-dimen-
sional model with proper posterior, for which
standard MCMC methods will work effectively.
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