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magnitudes of dispersion hyperparameters which
are often unknown. As an example, consider the
simple balanced, a_ldditive, two-way ANOVA model,

Yp=n+to+B+ey, i=1,..1
j= 1’--~;J,k= 1,...,K,
where ¢,;;, ~ N(0, 0.2), a; ~ N(0, 0.2), B, ~ N(, %2)

and we place a flat prior on u. Let n, = u + «; and
p; = m + B;, so that n; centers «;, and p; centers B;.
Then we can consider four possible parameteriza-
tions: (1) w-a-B; (2) u-n-B8; (3) w-a-p; (4) p-n-p.
Gelfand, Sahu and Carlin (1994b) discuss, under
varying relative magnitudes for g,, o, and o, which
of these parametrizations is best in terms of mixing
(using the diagnostic of Gelman and Rubin, 1992b),
which affects the rate of convergence, and in terms
of within-chain autocorrelation, which affects the
variability of resultant ergodic averages used for
inference.

Each of the four parametrizations produces a
distinct Gibbs sampler. Following our earlier re-
marks, we create a fifth MCMC algorithm, which
consists of cycling through these four parametriza-
tions in sequence, running one complete single-site
updating for each. To keep matters simple, we fix
the values of the variance components, set I = J =
K = 5 and use a sample of data generated from our
assumed likelihood. Two interesting cases are
shown in Figures 1 and 2, which display monitoring
plots, estimated Gelman and Rubin scale reduction
factors (labeled “G & R”) and lag 1 sample autocor-
relations (labeled “acfl”) for five initially overdis-
persed parallel chains of 500 iterations each under
the five algorithms. (To conserve space, we show
results only for «,;, @y, B;, B, and w.) The first
figure sets o, = 1, o, = 10 and o3 = 1, while the
second sets o, = 1, 0, = 10 and o3 = 20. In Figure
1, the algorithm based on parametrization #2 (a’s

Comment

Charles J. Geyer

The authors are to be congratulated on this very
nice paper, a tour de force in which all of various
aspects of MCMC are completely mastered. I find
myself largely in agreement with everything in this
paper. What comments I have are not really dis-
agreements but mere differences in emphasis.

Charles J. Geyer is Assistant Professor, School of
Statistics, University of Minnesota, Minneapolis,
Minnesota 55455.
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centered) is unequivocally the best of the first four,
as predicted by the theoretical work in Gelfand,
Sahu and Carlin (1994a, b). Matters are less clear
in Figure 2, with each of the individual parametri-
zations having problems with one or more of the
parameters. Notice that in both figures, for each
component of the parameter space, the fifth algo-
rithm achieves mixing which is as good as that of
any of the first four. In fact, in Figure 2, the
behavior of w is satisfactory only for this composite
algorithm. Note also, however, that the lag 1 auto-
correlations for the fifth algorithm are fairly high,
arising as weighted averages of those from the first
four, so the corresponding samples must be used
carefully in computing expectations via Monte Carlo
integration.

Hence with regard to convergence, in using deter-
ministic cycling through a medley of transition ker-
nels, the analyst is able to achieve the benefits of
each (and possibly more) without having to identify
their relative quality. The computational effort in
switching transition kernels in our examples only
requires changing from one linear parametrization
to another, and thus is quite efficient. Lastly, in
situations where Metropolis steps are to be used
within Gibbs samplers, thus necessitating proposal
densities, adaptive adjustment of the dispersion of
these proposals can be implemented concurrently
with the deterministic switching of transition ker-
nels.
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SEPARATION OF CONCERNS

Let me begin my comments with a digression.
Dijkstra (1976) in his seminal book on formal anal-
ysis of the correctness of computer programs intro-
duces the notion of “separation of concerns.” In
computing we have “the mathematical concerns
about correctness [of algorithms and. programs im-
plementing them] and the engineering concerns
about execution [speed, memory requirements, user-
friendliness, featurality]” and these should be kept
separate. There is no point in worrying about speed
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