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Theorem 2.1), which says that if R(x — y) = R(y)

and
( R(x) 1)
| x: <—1>0

7(x) ~ m

for all m, then ||P(X® = |x®) — #()| tends to
zero in ¢t slower than geometrically. It is straight-
forward to check these conditions in the Gaussian
example, and hence convergence is very slow.

With a random proposal density we can get a
geometrically convergent MCMC: Let R(x — y) =
R(y) be, with probability 1, a multivariate normal
Mpu, 3" 1) and, with probability 3, a multivariate
normal #(—u, 371). To bound the rate of conver-
gence one can use directly the uniform minorization
technique in Roberts and Polson (1994). Since

P(x > y) = m(y)exp| - ulSpu],
it follows that

IP(XD = xD) — 7 ()l < (1 - exp(—%,u,TE,uJ))t,

and convergence is geometric. Hence, randomizing
the proposal density helps. The mixture is somehow
reminiscent of antithetic variables. We get a burn-in
of order O(exp(3u” = w)), which may be quite over-
estimated because the uniform minorization tech-
nique is sometimes poor. Consider again, for in-
stance, the two-dimensional Ising model with 7T
sufficiently large. For a uniform proposal probabil-
ity the best estimate of the burn-in for Metropolis,
based on uniform minorization, is O(exp[(2/T)n)),
while one can show in this case (see Frigessi, Mar-
tinelli and Stander, 1993) that always ¢t* < O(e®/")
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We heartily endorse the authors’ conclusion that
Markov chain Monte Carlo (MCMC) “represents a
fundamental breakthrough in applied Bayesian
modeling.” We laud the authors’ effective unifica-
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and under condition (MO) in that paper t* =
O(nlog n). For the Gibbs sampler the bound is
even worse.

The next simple example shows that sometimes
a random proposal density does not speed up con-
vergence w.r.t. a deterministic density. Take 7 to
be the exponential density with parameter A. Let
R(x — y) = R(y) be also exponential with parame-
ter 0 < A’ < A. Then the acceptance probability is

A(x = y) = min(1,exp[ ~ (A = M)y — x)])

and the uniform minimization bound yields

/\/ t
IP(X® = x®) — ()]l < (1 _ 1‘) .

As before, consider now the random proposal den-
sity (again a symmetric mixture)

R(x »y) =R(y) = (XN exp(—A'y)
+(2A — AMexp[ —(2A — A)y]).
Via uniform minimization we obtain

IP(X® = |xD) — 7 ()|

)\/ t )\/ t
<l1-—] >{1-—].
-5 > (-7

Under a prudent policy, that is, trusting only cer-
tain bounds, here in this example randomizing can
slow down convergence. Of course lack of symmetry
plays a role. Summarizing, a blind use of random
proposal densities may not be advantageous. Are

there some guidelines for a successful application of
this potentially powerful idea?

tion of spatial, image-processing and applied
Bayesian literature, with illustrative examples from
each area and a substantial reference list. (As an
aside, one of us pondered the significance of the fact
that roughly one-fourth of the entries in this list
have lead authors whose surname begins with the
letter “G™)

We begin with a few preliminary remarks. First,
with regard to practical implementation, the artifi-
cial “drift” among the variables alluded to in Sec-
tion 2.4.3 is well known to those who fit structured
random effects models and is a manifestation of
weak identification of the parameters in the joint
posterior. Reparametrization and more precise hy-
perprior specification are common tricks to improve
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