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Comment

Arnoldo Frigessi

In the beginning there was the Gibbs sampler and
the Metropolis algorithm. We are now becoming
more and more aware of the variety and power of
MCMC methods. The article by Besag, Green, Hig-
don and Mengersen is a further step toward full
control of the MCMC toolbox. I like the three appli-
cations, which show how to incorporate MCMC
methods into inference and which also give rise to
several methodological contributions. As the au-
thors write, out of five main issues in MCMC, they
concentrate primarily on the choice of the specific
chain. The other four issues regard, in one way or
another, the question of convergence of MCMC pro-
cesses. I believe that choosing an MCMC algorithm
and understanding its convergence are two steps
that cannot be divided. Estimating rates of conver-
gence (in some sense) before running the chain or

' stopping the iterations when the target is almost
hit are needed operations if we would like to trust
the inferential conclusions drawn on the basis of
MCMC runs. This is especially true because conver-
gence of MCMC processes is much harder to detect
as compared to convergence of, say, Newton—Raph-
son.
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We can often read in applied papers that “100
iterations seem to be enough for approximate con-
vergence,” the number being sometimes supported
by studies on simulated data (see, e.g., Frigessi and
Stander, 1994). This is really too weak to rely on
the statistical conclusions, and more can be done. If
X® is the MCMC process with target distribution
7 on (), the burn-in can be estimated by comput-
ing a t* such that

[P(X® = 12D) — 7 ()l < &,

for some fixed accuracy ¢ and for some chosen
norm, say, total variation. Several techniques are
available to bound the total variation error from
above,

(2 [P(X® = [xD) — 7 ()] < g(2),

where g(t) is a nonincreasing function decaying to
zero. Then an upper bound on ¢* can be derived by
inversion of g, probably a pessimistic estimate of
the burn-in, but a “safe” choice. Tight bounds of the
type (2) are hard to get and there are no precise
general guidelines for the length of the burn-in.
However a very rough reference value for t* is
available if 7 is a lattice-based Markov random
field (MRF). In Section 1 of Frigessi, Martinelli and
Stander (1993) we extend and adapt results origi-
nally developed in statistical mechanics and rather
unknown to statisticians. Let # be a MRF on a

(1) Vit>t*

X o

®

www.jstor.org



