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Bruce G. Lindsay and Bing Li

The two papers before us consider the same
basic problem: statistical inference for a finite di-
mensional parameter, possibly in the presence of
nuisance parameters. The strikingly different re-
sults arise from the differing approaches to mak-
ing modelling assumptions. Whereas Professors
Liang and Zeger would have us make the min-
imal assumptions necessary to achieve the in-
ference, Professor Reid shows that a completely
believed parametric model assumption can be
turned into a gold mine of more precise asymp-
totic approximations. We wish to discuss here
some aspects of the middle ground between these
two extremes and how it relates to conditional
inference.

Perhaps it is useful to make a distinction be-
tween the goals that we attempt to achieve by em-
ploying conditional inference and the natural conse-
quences to which conditional inference leads. These
goals are, for example, (i) to make the assessment of
the precision of a statistical method as true to the
experiment that actually occurred as possible and
(ii) to make the inference about the interest param-
eter as accurate as possible by minimizing the ef-
fect of the estimation of the nuisance parameter.
If an appropriate parametric model is applicable,
as it is in many important examples, then con-
ditional inference is a powerful means to achieve
these purposes. However, we want a statistical pro-
cedure to possess these desirable properties whether
or not we have suitable ancillary statistics to con-
dition on, and whether or not we have a fully
prescribed model under which we can talk about
conditional probability in accurate terms. Although
the principle of conditioning on ancillary statis-
tics or on sufficient statistics for the nuisance pa-
rameter is very clear when we have rigidly pre-
scribed a parametric model, we ask what its sta-
tistical meaning might be outside those contexts.
‘We offer here some illustrations of how the idea
of projection, as used by Liang and Zeger, can
be useful in achieving these goals under such
circumstances.
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We start with a basic tool, the Bhattacharyya
scores. Let X = (X,..., X,,) be independent ran-
dom observations with density f(x; 0). The Bhat-
tacharyya scores B;, i =0,1,2,..., are defined by
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For example, if we write the log-likelihood function
as [(0; X), then B is the score function / and B, is
[+ I2. We consider {B,: i =0,1,..., k} as vectors
in the Hilbert space of square-integrable functions
h(x, 6), with inner product E{%,(X, 0)hy(X, 0); 0}.
We use 4 to denote the subspace spanned some or
all Bhattacharyya scores; P, the orthogonal projec-
tion onto #; and I — P, the orthogonal projection
onto the orthogonal complement of %. We wish to
discuss how one can use these scores to evaluate or
improve conditional-type properties of inference.

Our first illustration is an optimality property of
the observed Fisher information. Let 6 be the maxi-
mum likelihood estimate. Conditional inference sug-
gests that the assessment of the precision of 6
be conditioned on any ancillary statistics. The re-
sults of Efron and Hinkley (1978) indicate that, for
translation families and numerous other cases, the
variance of 6, conditioned upon an ancillary, is ap-
proximated by the inverse of the observed Fisher
information. Here, the goal is to make the preci-
sion assessment more relevant to the realized ex-
periment, and it is achieved by drawing inference
conditioning on ancillary statistics.

It is possible, however, to achieve this goal with-
out specifying an ancillary statistic, either exact or
approximate. Consider the following (unconditional)
minimization problem: choose a statistic 7'(X) that
minimizes the mean squared error

(1) By=1, B,= =1,2,....

E,{(8 - 6,)" - T(X)}".

Lindsay and Li (1995) demonstrated that, among
a wide class of statistics, the asymptotically opti-
mal choice of T(X) is once again the inverse of the
observed Fisher information. The result relies not
on the specification of ancillaries or approximate
ancillaries, which may be difficult to obtain un-
der some circumstances, but rather an asymptotic
Cramér—Rao-type argument based on the projection
of (6 — 6y)? — T(X) onto # = span{B;: i =0, 1,2}.
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