L. LE CAM

University of California, Berkeley

Our distinguished colleagues deserve congratulations for contributing yet another important study on the behavior of Bayes estimates. Looking over the main thrust of their essay, I find it ironic that two self-confessed former Bayesians have spent so much ingenuity showing that Bayes estimates can behave very badly, while the present writer, a staunch former and present anti-Bayesian, made efforts to emphasize the good properties of Bayes estimates. One could perhaps summarize the situation as follows: Take a family $\{P_{\theta}: \theta \in \Theta\}$ of probability measures P_{θ} on a Polish space \mathscr{X} and suppose that Θ itself is either Polish or at least Borelian in a Polish space. Then, according to Wald and others, for any decision problem, Bayes and approximate Bayes procedures form complete classes. If μ is a positive finite measure on Θ and if $\theta \rightarrow P_{\theta}(A)$ is measurable for each Borel $A \subset \mathcal{X}$, one can form a marginal measure $\mu \cdot P$ and a joint "semidirect product" measure $\mu \otimes P$ by $(\mu \otimes P)(B \times A) = \int_{B} P_{\theta}(A)\mu(d\theta)$. If one takes seriously the principle, call it Principle II, that sets of very small $\mu \otimes P$ probability are practically negligible, then Bayes procedures for $\mu \otimes P$ are good. If, however, one induces the distributions on \mathscr{X} through some other measure, say Q, Bayes procedures can behave in a most unpredictable fashion. This is so, as shown by our colleagues, even if μ is itself a direct product of two terms (Dirichlet × Gaussian) that, separately, lead to excellent behavior.

Under Principle Π one obtains theorems such as Doob's theorem of 1949 and a variety of other results. For instance, in the i.i.d. case, and many other ones, anything that is asymptotically Bayes for a prior measure μ is also asymptotically Bayes for any $\nu \geq 0$ dominated by μ . In the most general case, with all the items in sight depending on some n that tends to infinity, suppose Θ metrized by a distance d and look at balls B(t,r) of center t and radius r depending on x. Select, among balls whose posterior probability is $> \frac{1}{2}$, one that has almost the smallest possible radius. Let $\hat{\theta}_n$ be its center. Then if for the joint measures $\mu \otimes P$ there are estimates T_n that converge at a rate δ_n (in the sense that for $\varepsilon > 0$ there is a $b < \infty$ such that $[\mu \otimes P][d(T_n\theta) \geq bd_n] < \varepsilon$ for n large), then $\hat{\theta}_n$ enjoys the same properties. The "tails" $(\mu \otimes P)[d(\hat{\theta}, \theta) \geq b\delta_n]$ also tend to zero at the best possible rate.

There are many more properties of this general nature. Unfortunately, they give little information about what happens for observations X generated from a probability measure Q, unless it happens that Q is close to an average $P_{\nu} = \int_{V} P_{\theta} \mu(d\theta) / \mu(V)$ for sets V whose μ measure is not too small, or, if there is an n involved, for sets such that $\mu(V)$ does not tend to zero too rapidly.

In a paper (Le Cam, 1982) cited by Diaconis and Freedman, the present writer attempted to obtain bounds on the maximum risk of Bayes estimates in a situation describable as follows: One has independent observations X_j , $j=1,2,\ldots$, where X_j has distribution $p_{\theta_j,j}$, $\theta\in\Theta$. One introduces a distance H by $H^2(s,t)=\frac{1}{2}\sum_j\int(\sqrt{dp_{s,j}}-\sqrt{dp_{t,j}})^2$. Then, letting $D(\tau)$ be the metric dimension of the space $\{\Theta,H\}$ at the level τ , one can show that there exist estimates T_n such that $E_{\theta}H^2(T_n,\theta)\leq CD(a)$ where a is a number such that (for D(a) large) one