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Our distinguished colleagues deserve congratulations for contributing yet
another important study on the behavior of Bayes estimates. Looking over the
main thrust of their essay, I find it ironic that two self-confessed former
Bayesians have spent so much ingenuity showing that Bayes estimates can
behave very badly, while the present writer, a staunch former and present
anti-Bayesian, made efforts to emphasize the good properties of Bayes estimates.
One could perhaps summarize the situation as follows: Take a family {P;: § € 0}
of probability measures P, on a Polish space £ and suppose that © itself is either
Polish or at least Borelian in a Polish space. Then, according to Wald and others,
for any decision problem, Bayes and approximate Bayes procedures form com-
plete classes. If p is a positive finite measure on ® and if 6 ~ P,(A) is
measurable for each Borel A C %, one can form a marginal measure p - P and a
joint “semidirect product” measure p ® P by (p ® P)(B X A) = [gPy(A)u(d8).
If one takes seriously the principle, call it Principle II, that sets of very small
p ® P probability are practically negligible, then Bayes procedures for p ® P are
good. If, however, one induces the distributions on £ through some other
measure, say @, Bayes procedures can behave in a most unpredictable fashion.
This is so, as shown by our colleagues, even if u is itself a direct product of two
terms (Dirichlet X Gaussian) that, separately, lead to excellent behavior.

Under Principle IT one obtains theorems such as Doob’s theorem of 1949 and a
variety of other results. For instance, in the ii.d. case, and many other ones,
anything that is asymptotically Bayes for a prior measure pu is also asymptoti-
cally Bayes for any » > 0 dominated by p. In the most general case, with all the
items in sight depending on some n that tends to infinity, suppose ® metrized by
a distance d and look at balls B(¢, r) of center ¢ and radius r depending on x.
Select, among balls whose posterior probability is > }, one that has almost the
smallest possible radius. Let 0 be its center. Then if for the joint measures p ® P
there are estimates T, that converge at a rate §, (in the sense that for & > 0 there
isa b < oo such that [r ® P)d(T,0) > bd,] < ¢ for n large), then 0 enjoys the
same properties. The “tails” (p ® P)[d(4, 0) > b, ] also tend to zero at the best
possible rate.

There are many more properties of this general nature. Unfortunately, they
give little information about what happens for observations X generated from a
probability measure €, unless it happens that @ is close to an average P, =
[vPyu(dB)/n(V) for sets V whose p measure is not too small, or, if there is an n
involved, for sets such that u(V') does not tend to zero too rapidly.

In a paper (Le Cam, 1982) cited by Diaconis and Freedman, the present writer
attempted to obtain bounds on the maximum risk of Bayes estimates in a
situation describable as follows: One has independent observations X, J=
1,2,..., where X, has distribution p, ;, § € ©. One introduces a dlstance H by
H 2(s t) = 3%,/ (\/ » ‘/—U )2, Then, letting D(7) be the metric dimension of
the space {O, H } at the level 7, one can show that there exist estimates 7, such
that E,H%T,, ) < CD(a) where a is a number such that (for D(a) large) one
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