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I am grateful to be granted the opportunity to comment on this interesting
paper. It represents a synthesis of several smoothing techniques under one
characterisation, it proposes a useful way of carrying out multiple regression
that lies somewhere between multiple linear regression and the general additive
models that underline ACE, and it investigates the properties of a practicable
algorithm for obtaining the fit of the models to a set of data. There is much to
discuss in the paper but, apart from a few brief comments and questions near the
end, I should like to concentrate my remarks on a particular aspect, namely, the
concept of degrees of freedom associated with the fitted models and the relation-
ship with the choice of smoothing parameter.

I shall lead into my specific points by observing that, at first sight, the
structure under consideration offers a variety of immediately applicable smooth-
ing techniques, as indicated early on in Figure 2. However, a closer reading
reveals that, if one is confronted with a particular set of data, the situation is not
quite so straightforward. The authors remark that all their generic, linear
techniques are characterised, in some guise, by a smoothing parameter. If,
however, the choice of smoothing parameter is to be data-driven, then the
linearity is lost. They are quite correct, of course, but unfortunately one finds
repeatedly, in the literature, that the choice of a good smoothing parameter
is considered to be a rather sensitive issue and that automatic, data-driven
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