DISCRETENESS OF FERGUSON SELECTIONS¹

BY DAVID BLACKWELL

University of California, Berkeley

In a fundamental paper on nonparametric Bayesian inference, Ferguson [1] associated with each probability measure α on a set S and each positive number c a way of selecting a probability measure on S at random. One of his interesting results is that his method selects a discrete distribution with probability 1. Ferguson's proof uses an explicit representation of the gamma process; we present here a quite different and perhaps simpler proof.

THEOREM 1 (Ferguson). Let S be a nonempty Borel subset of a complete separable metric space and let B_1 , B_2 , \cdots be Borel subsets of S that form a separating sequence, i.e. for any two distinct points s_1 and s_2 of S there is an n for which $\xi_n(s_1) \neq \xi_n(s_2)$, where ξ_n is the indicator of B_n . For any finite sequence $t = (\varepsilon_1, \dots, \varepsilon_k)$ of 0's and 1's, denote by B(t) the set of all s for which $(\xi_1, \dots, \xi_k) = t$; for the empty sequence e, put B(e) = S. For any probability measure α on the Borel sets of S and any positive number c, if we select a function p from the set p of all finite sequences of 0's and 1's to the unit interval [0, 1] so that the p(p) are independent and p(p) has a beta distribution with parameters p(p) and p(p), where

$$u(t) = c\alpha(B(t1))$$
$$v(t) = c\alpha(B(t0))$$

then, with probability 1, there will be a unique probability distribution p on the Borel sets of S such that

(1)
$$p(\xi_{k+1} = 1 | (\xi_1, \dots, \xi_k) = t) = y(t)$$
 for all $t \in T$.

Moreover, with probability 1, p will be discrete.

The beta distribution for u > 0, v = 0 is concentrated at 1 and for u = 0, v > 0 is concentrated at 0; its definition for u = v = 0 is irrelevant. Uniqueness of p is clear, since given y we can calculate p(B(t)) for all t and, since $\xi = (\xi_1, \xi_2, \cdots)$ is separating, any two p's that agree on all B(t) are identical.

It will be seen that what forces discreteness is convergence of $\sum_t Ey(t)(1-y(t))$. To get this convergence we shall use Theorem 2.

THEOREM 2. Put $x(t) = \alpha(B(t))$. Then

- (a) $\sum_{|t| \le n} x(t0)x(t1) = \frac{1}{2}(1 D_n)$, where |t| denotes the length of t and $D_n = \sum_{|w|=n+1} x^2(w)$.
- (b) $\sum_t x(t0)x(t1) = \frac{1}{2}(1-D)$, where $D = \sum_s \alpha^2(s)$ is the sum of the squares of the probabilities of all points of S that have positive probability.

www.jstor.org

Received October 27, 1969; revised September 27, 1971.

¹ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, USAF, under Grant AFOSR-1312-67.

356