MODIFICATIONS OF THE LINK RELATIVE AND INTERPOLATION METHODS OF DETERMINING SEASONAL VARIATION

Bγ

RICHARD A. ROBB

In a recent paper the statistical department of the Detroit Edison Company have introduced a new method of calculating seasonal variation in a time series. Briefly, the time series $\cdot u_x$ is represented by the function $\cdot u_x - f(x) \cdot c(x) \cdot s(x) + \varepsilon_x$ where f(x) represents secular trend, $c(x) \cdot c(x) \cdot c(x) \cdot s(x)$ seasonal, and ε_x residual errors, and by the Method of Least Squares the seasonal variation for any one month will be given by

(A)
$$s_i = \frac{\sum_{\sigma} u_x f(x) \cdot c(x)}{\sum_{\sigma} [f(x) c(x)]^2}$$
 $i - 1, 2, 3, ... 12.$

where $\mathfrak{S}(i)$ represents the seasonal variation in the i th month and the summations in the right hand member of the equation are taken over the years covered by the time series.

If the Method of Moments be used

(B)
$$s_i = \frac{\sum u_x}{\sum [f(x) c(x)]}$$

The trouble lies in the determination of the denominator $\mathcal{L}[f(x) \ c(x)]^2$ or $\mathcal{L}[f(x) \cdot c(x)]$. The Detroit Edison have overcome this difficulty by smoothing the observed time series with a sixth degree parabola, keeping the total population for each year unchanged over a period of seven years. In this way seasonal

^{1.} A Mathematical Theory of Seasonals, Annals of Math. Stat., I, p. 57.