A NOTE ON SHEPPARD’S CORRECTIONS

BY SOLOMON KULLBACK

In this note we shall derive a simple relation between the characteristic function of the grouped distribution and the characteristic function of the original continuous distribution, assuming that the frequency curve has high contact with the x-axis at both ends.

If we set \(p_s = \int_{x_s - \frac{w}{2}}^{x_s + \frac{w}{2}} f(x) \, dx \), then the characteristic function of the grouped distribution is given by

\[\psi(t) = \sum e^{itz} p_s, \]

where \(i = \sqrt{-1} \). Replacing \(p_s \) by its value as given above, we have

\[\psi(t) = \sum e^{itz} \int_{x_s - \frac{w}{2}}^{x_s + \frac{w}{2}} f(x) \, dx \]

\[= \sum e^{itz} \int_{-\frac{w}{2}}^{\frac{w}{2}} f(x + x_s) \, dx \]

\[= \int_{-\frac{w}{2}}^{\frac{w}{2}} dx \sum e^{itz} f(x + x_s) \]

\[= \sum e^{itz} f(x_s) \int_{-\frac{w}{2}}^{\frac{w}{2}} e^{-itz} \, dx. \]

There is no difficulty about justifying the inversion of the order of integration and summation.

Because of the assumption of high-contact with the axis of \(x \) at both ends of the frequency curve, we have

\[\varphi(t) = \int e^{itz} f(x) \, dx = w \sum e^{itz} \varphi(x_s) \]

so that

\[\psi(t) = \frac{2}{wt} \sin \frac{tw}{2} \varphi(t). \]