THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

By S. S. WILKS

By applying the principle of maximum likelihood, J. Neyman and E. S. Pearson² have suggested a method for obtaining functions of observations for testing what are called *composite statistical hypotheses*, or simply *composite hypotheses*. The procedure is essentially as follows: A population K is assumed in which a variate x (x may be a vector with each component representing a variate) has a distribution function $f(x, \theta_1, \theta_2, \dots \theta_h)$, which depends on the parameters $\theta_1, \theta_2 \dots \theta_h$. A simple hypothesis is one in which the θ 's have specified values. A set Ω of admissible hypotheses is considered which consists of a set of simple hypotheses. Geometrically, Ω may be represented as a region in the h-dimensional space of the θ 's. A set ω of simple hypotheses is specified by taking all simple hypotheses of the set Ω for which $\theta_i = \theta_{0i}$, $i = m + 1, m + 2, \dots h$.

A random sample O_n of n individuals is considered from K. O_n may be geometrically represented as a point in an n-dimensional space of the x's. The probability density function associated with O_n is

(1)
$$P = \prod_{\alpha=1}^{n} f(x_{\alpha}, \theta_{1}, \theta_{2}, \dots \theta_{h})$$

Let $P_{\Omega}(O_n)$ be the least upper bound of P for the simple hypotheses in Ω , and $P_{\omega}(O_n)$ the least upper bound of P for those in ω . Then

(2)
$$\lambda = \frac{P_{\omega}(O_n)}{P_{\Omega}(O_n)}$$

is defined as the likelihood ratio for testing the composite hypothesis H that O_n is from a population with a distribution characterized by values of the θ_i for some simple hypothesis in the set ω . When we say that H is true, we shall mean that O_n is from some population of the set just described. In most of the cases of any practical importance, P and its first and second derivatives with respect to the θ_i are continuous functions of the θ_i almost everywhere in a certain region of the θ -space for almost all possible samples O_n . We shall only consider the case in which $P_{\Omega}(O_n)$ and $P_{\omega}(O_n)$ can be determined from the first and second order derivatives with respect to the θ 's.

¹ Presented to the American Mathmatical Society, March 26, 1937.

² Phil. Trans. Roy. Soc. London, Ser. A, Vol. 231, p. 295.