SHORTEST AVERAGE CONFIDENCE INTERVALS FROM LARGE SAMPLES

By S. S. WILKS

1. Introduction. The method of fiducial argument [1, 2] in statistics has gained considerable prominence within the last few years as a method of inferring the values of population parameters from samples "randomly drawn" from populations having distribution laws of known functional forms. The method has also been shown to be applicable [2] to the problem of inferring the values of statistical functions in samples from samples already observed, assuming all samples to be drawn from a population with a distribution law of a given functional form.

The main ideas of a procedure which is sufficient for carrying out fiducial inference for certain cases of a single population parameter may be summed up in the following steps:

- (a) A sample is assumed to be "randomly drawn" from a population with a distribution law $f(x, \theta)$ of known functional form.
- (b) A function $\psi(x_1, x_2, \dots, x_n, \theta)$ of the sample values x_1, x_2, \dots, x_n and parameter θ is devised, which is a monotonic function of θ for a given sample, so that the sampling distribution $G(\psi)d\psi$ of $\psi(x_1, x_2, \dots, x_n, \theta_0) = \psi_0$, say, in samples from the population with $\theta = \theta_0$ is independent of θ_0 and the x's, except as they enter into ψ .
- (c) For a given probability α a pair of numbers ψ'_{α} and ψ''_{α} is chosen so that when $\theta = \theta_0$, the probability that $\psi'_{\alpha} < \psi_0 < \psi''_{\alpha}$ is 1α , or more, briefly,

$$(1) P(\psi_{\alpha}' < \psi_0 < \psi_{\alpha}'' \mid \theta = \theta_0) = 1 - \alpha$$

which can be stated in the alternative form

(2)
$$P(\theta < \theta_0 < \bar{\theta} \mid \theta = \theta_0) = 1 - \alpha.$$

(d) θ and $\bar{\theta}$ being functions of ψ'_{α} , ψ''_{α} and the sample, are subject to sampling fluctuations and it can be stated that the probability is $1 - \alpha$ that they will include the true value of θ , whatever it may be, that is, θ_0 , between them. The statement holds for all values which θ_0 may take on.

The numbers θ and $\bar{\theta}$ are known as fiducial or confidence limits [3] of θ_0 and $(\underline{\theta}, \bar{\theta})$ a confidence interval for the confidence coefficient $1 - \alpha$. We therefore have the following rule for making inferences about the unknown number θ_0 once ψ has been found: For a given sample solve the equations

$$\psi(x_1, x_2, \dots, x_n, \theta_0) = \psi'_{\alpha}, \qquad \psi(x_1, x_2, \dots, x_n, \theta_0) = \psi''_{\alpha}$$