SHORTEST AVERAGE CONFIDENCE INTERVALS
FROM LARGE SAMPLES

BY S. S. Wilks

1. Introduction. The method of fiducial argument [1, 2] in statistics has gained considerable prominence within the last few years as a method of inferring the values of population parameters from samples “randomly drawn” from populations having distribution laws of known functional forms. The method has also been shown to be applicable [2] to the problem of inferring the values of statistical functions in samples from samples already observed, assuming all samples to be drawn from a population with a distribution law of a given functional form.

The main ideas of a procedure which is sufficient for carrying out fiducial inference for certain cases of a single population parameter may be summed up in the following steps:

(a) A sample is assumed to be “randomly drawn” from a population with a distribution law \(f(x, \theta) \) of known functional form.

(b) A function \(\psi(x_1, x_2, \ldots, x_n, \theta) \) of the sample values \(x_1, x_2, \ldots, x_n \) and parameter \(\theta \) is devised, which is a monotonic function of \(\theta \) for a given sample, so that the sampling distribution \(G(\psi) d\psi \) of \(\psi(x_1, x_2, \ldots, x_n, \theta_0) = \psi_0 \), say, in samples from the population with \(\theta = \theta_0 \) is independent of \(\theta_0 \) and the \(x \)'s, except as they enter into \(\psi \).

(c) For a given probability \(\alpha \) a pair of numbers \(\psi_\alpha' \) and \(\psi_\alpha'' \) is chosen so that when \(\theta = \theta_0 \), the probability that \(\psi_\alpha' < \psi_0 < \psi_\alpha'' \) is \(1 - \alpha \), or more, briefly,

\[
P(\psi_\alpha' < \psi_0 < \psi_\alpha'' | \theta = \theta_0) = 1 - \alpha
\]

which can be stated in the alternative form

\[
P(\theta < \theta_0 < \bar{\theta} | \theta = \theta_0) = 1 - \alpha.
\]

(d) \(\theta \) and \(\bar{\theta} \) being functions of \(\psi_\alpha', \psi_\alpha'' \) and the sample, are subject to sampling fluctuations and it can be stated that the probability is \(1 - \alpha \) that they will include the true value of \(\theta \), whatever it may be, that is, \(\theta_0 \), between them. The statement holds for all values which \(\theta_0 \) may take on.

The numbers \(\theta \) and \(\bar{\theta} \) are known as fiducial or confidence limits [3] of \(\theta_0 \) and \((\theta, \bar{\theta}) \) a confidence interval for the confidence coefficient \(1 - \alpha \). We therefore have the following rule for making inferences about the unknown number \(\theta_0 \) once \(\psi \) has been found: For a given sample solve the equations

\[
\psi(x_1, x_2, \ldots, x_n, \theta_0) = \psi_\alpha', \quad \psi(x_1, x_2, \ldots, x_n, \theta_0) = \psi_\alpha''
\]