from which we can find

$$\rho_{v\,c^2}\sigma_v\,\sigma_{c^2} = \frac{2n(1-m)}{m(n+2)(m+n)}$$

and

$$\rho_{UC^2}^2 \cong \rho_{VC^2}^2 = \frac{(n+3)(n+4)(m+n-1)}{(n+1)(m+n+1)(m+n+2)}.$$

If $n/m = \gamma$ (a fixed constant) and n is large

$$\rho^2 \cong \frac{n}{n+m}.$$

 ρ^2 will be near 1 when n is much larger than m. This corresponds, in computing C^2 , to dividing the smaller sample into subgroups by the larger. In this case U and C^2 give essentially the same information. When m and n are more nearly equal the two criteria are quite different. For n > m, C^2 has fewer possible values than for n < m, and is therefore a more sensitive test when n < m.

While it is doubtful that this test is biased for large samples, this question will not be considered in the present note.

PRINCETON UNIVERSITY, PRINCETON, N. J.

SIGNIFICANCE TEST FOR SPHERICITY OF A NORMAL n-VARIATE DISTRIBUTION

By John W. Mauchly

1. Introduction. This note is concerned with testing the hypothesis that a sample from a normal *n*-variate population is in fact from a population for which the variances are all equal and the correlations are all zero. A population having this symmetry will be called "spherical." Under a linear orthogonal transformation of variates, a spherical population remains spherical, and consequently the features of a sample which furnish information relevant to this hypothesis must be invariant under such transformations.

A situation for which this test is indicated arises when the sample consists of N n-dimensional vectors, for which the variates are the n components along coordinate axes known to be mutually perpendicular, but having an orientation which is, a priori at least, quite arbitrary. A specific application for two dimensions, treated elsewhere [1], may be mentioned. Each of N days furnishes a sine and a cosine Fourier coefficient for a given periodicity, and these, when plotted as ordinate and abcissa, yield a somewhat elliptical cloud of N points. The sine and cosine functions are orthogonal, and their variances have