ASYMPTOTICALLY MOST POWERFUL TESTS OF STATISTICAL
HYPOTHESES

BY ABRAHAM WALD

Columbia University, New York City

1. Introduction. Let \(f(x, \theta) \) be the probability density function of a variate
\(x \) involving an unknown parameter \(\theta \). For testing the hypothesis \(\theta = \theta_0 \) by
means of \(n \) independent observations \(x_1, \ldots, x_n \) on \(x \) we have to choose a region
of rejection \(W_n \) in the \(n \)-dimensional sample space. Denote by \(P(W_n \mid \theta) \) the
probability that the sample point \(E = (x_1, \ldots, x_n) \) will fall in \(W_n \) under the
assumption that \(\theta \) is the true value of the parameter. For any region \(U_n \) of
the \(n \)-dimensional sample space denote by \(g(U_n) \) the greatest lower bound of
\(P(U_n \mid \theta) \). For any pair of regions \(U_n \) and \(T_n \) denote by \(L(U_n, T_n) \) the least
upper bound of

\[
P(U_n \mid \theta) - P(T_n \mid \theta).
\]

In all that follows we shall denote a region of the \(n \)-dimensional sample space
by a capital letter with the subscript \(n \).

Definition 1. A sequence \(\{W_n\}, (n = 1, 2, \ldots, \text{ad inf.}) \), of regions is said to
be an asymptotically most powerful test of the hypothesis \(\theta = \theta_0 \) on the level
of significance \(\alpha \) if \(P(W_n \mid \theta_0) = \alpha \) and if for any sequence \(\{Z_n\} \) of regions for
which \(P(Z_n \mid \theta_0) = \alpha \), the inequality

\[
\limsup_{n \to \infty} L(Z_n, W_n) \leq 0
\]

holds.

Definition 2. A sequence \(\{W_n\}, (n = 1, 2, \ldots, \text{ad inf.}) \), of regions is said to
be an asymptotically most powerful unbiased test of the hypothesis \(\theta = \theta_0 \) on the level of significance \(\alpha \) if \(P(W_n \mid \theta_0) = \lim g(W_n) = \alpha \), and if for any se-
quency \(\{Z_n\} \) of regions for which \(P(Z_n \mid \theta_0) = \lim g(Z_n) = \alpha \), the inequality

\[
\limsup_{n \to \infty} L(Z_n, W_n) \leq 0
\]

holds.

Let \(\hat{\theta}_n(x_1, \ldots, x_n) \) be the maximum likelihood estimate of \(\theta \) in the \(n \)-dimen-
sional sample space. That is to say, \(\hat{\theta}_n(x_1, \ldots, x_n) \) denotes the value of \(\theta \)

1 Presented to the American Mathematical Society at New York, February 24, 1940.
2 Research under a grant-in-aid from the Carnegie Corporation of New York.