ASYMPTOTICALLY MOST POWERFUL TESTS OF STATISTICAL 'HYPOTHESES'

By Abraham Wald²

Columbia University, New York City

1. Introduction. Let $f(x, \theta)$ be the probability density function of a variate x involving an unknown parameter θ . For testing the hypothesis $\theta = \theta_0$ by means of n independent observations x_1, \dots, x_n on x we have to choose a region of rejection W_n in the n-dimensional sample space. Denote by $P(W_n | \theta)$ the probability that the sample point $E = (x_1, \dots, x_n)$ will fall in W_n under the assumption that θ is the true value of the parameter. For any region U_n of the n-dimensional sample space denote by $g(U_n)$ the greatest lower bound of $P(U_n | \theta)$. For any pair of regions U_n and T_n denote by $L(U_n, T_n)$ the least upper bound of

$$P(U_n \mid \theta) - P(T_n \mid \theta).$$

In all that follows we shall denote a region of the n-dimensional sample space by a capital letter with the subscript n.

Definition 1. A sequence $\{W_n\}$, $(n=1, 2, \dots, ad inf.)$, of regions is said to be an asymptotically most powerful test of the hypothesis $\theta = \theta_0$ on the level of significance α if $P(W_n \mid \theta_0) = \alpha$ and if for any sequence $\{Z_n\}$ of regions for which $P(Z_n \mid \theta_0) = \alpha$, the inequality

$$\limsup_{n\to\infty}L(Z_n,W_n)\leq 0$$

holds.

Definition 2. A sequence $\{W_n\}$, $(n = 1, 2, \dots, ad inf.)$, of regions is said to be an asymptotically most powerful unbiased test of the hypothesis $\theta = \theta_0$ on the level of significance α if $P(W_n \mid \theta_0) = \lim_{n = \infty} g(W_n) = \alpha$, and if for any sequence $\{Z_n\}$ of regions for which $P(Z_n \mid \theta_0) = \lim_{n = \infty} g(Z_n) = \alpha$, the inequality

$$\limsup_{n\to\infty}L(Z_n,W_n)\leq 0$$

holds.

Let $\hat{\theta}_n(x_1, \dots, x_n)$ be the maximum likelihood estimate of θ in the *n*-dimensional sample space. That is to say, $\hat{\theta}_n(x_1, \dots, x_n)$ denotes the value of θ

¹ Presented to the American Mathematical Society at New York, February 24, 1940.

² Research under a grant-in-aid from the Carnegie Corporation of New York.