DISTRIBUTION OF THE RATIO OF THE MEAN SQUARE SUCCESSIVE DIFFERENCE TO THE VARIANCE

By John von Neumann

Institute for Advanced Study

1. Introduction. Let x_1, \ldots, x_n be variables representing n successive observations in a population which obeys a distribution law

$$ce^{-(x-\xi)^2/2\sigma^2}dx,$$

$$c = \frac{1}{\sigma \sqrt{2\pi}},$$

i.e. which is normal, with the mean ξ and the standard deviation σ. For the sample we define as usual the mean,

$$\bar{x} = \frac{1}{n}\sum_{\mu=1}^{n} x_\mu,$$

the variance,

$$s^2 = \frac{1}{n}\sum_{\mu=1}^{n} (x_\mu - \bar{x})^2,$$

and also the mean square successive difference

$$\delta^2 = \frac{1}{n-1}\sum_{\mu=1}^{n-1} (x_{\mu+1} - x_\mu)^2.$$

The reasons for the study of the distribution of the mean square successive difference δ^2, in itself as well as in its relationship to the variance s^2, have been set forth in a previous publication, to which the reader is referred. The distribution of δ^2, and in particular its moments, were also studied there. The present paper is devoted to the investigation of the ratio

$$\eta = \frac{\delta^2}{s^2}.$$

A comparison of the observed value of η with that distribution is particularly suited as a basis of the judgment whether the observations x_1, \ldots, x_n are independent or whether a trend exists. (Cf. sections 1 and 2, loc. cit.\(^5\))

The moments of η have already been determined by J. D. Williams by a

\(^1\) Also Scientific Advisory Committee of the Ballistic Research Laboratory, Aberdeen Proving Ground.

367