DISTRIBUTION OF THE RATIO OF THE MEAN SQUARE SUCCESSIVE DIFFERENCE TO THE VARIANCE

By John von Neumann

Institute for Advanced Study¹

1. Introduction. Let x_1, \dots, x_n be variables representing n successive observations in a population which obeys a distribution law

$$ce^{-(x-\xi)^2/2\sigma^2}dx,$$
 $\left(c=\frac{1}{\sigma\sqrt{2\pi}}\right),$

i.e. which is normal, with the mean ξ and the standard deviation σ . For the sample we define as usual the mean,

$$\bar{x} = \frac{1}{n} \sum_{\mu=1}^n x_{\mu},$$

the variance,

$$s^2 = \frac{1}{n} \sum_{\mu=1}^{n} (x_{\mu} - \bar{x})^2,$$

and also the mean square successive difference

$$\delta^2 = \frac{1}{n-1} \sum_{\mu=1}^{n-1} (x_{\mu+1} - x_{\mu})^2.$$

The reasons for the study of the distribution of the mean square successive difference δ^2 , in itself as well as in its relationship to the variance s^2 , have been set forth in a previous publication², to which the reader is referred. The distribution of δ^2 , and in particular its moments, were also studied there. The present paper is devoted to the investigation of the ratio

$$\eta = \frac{\delta^2}{\delta^2}.$$

A comparison of the observed value of η with that distribution is particularly suited as a basis of the judgment whether the observations x_1, \dots, x_n are independent or whether a trend exists. (Cf. sections 1 and 2, loc. cit.²)

The moments of η have already been determined by J. D. Williams by a

¹ Also Scientific Advisory Committee of the Ballistic Research Laboratory, Aberdeen Proving Ground.

² John von Neumann, R. H. Kent, H. R. Bellinson, B. I. Hart, "The mean square successive difference," *Annals of Math. Stat.*, Vol. 12 (1941), pp. 153-162.