NOTES

This section is devoted to brief research and expository articles, notes on methodology and other short items.

A FURTHER REMARK CONCERNING THE DISTRIBUTION OF THE RATIO OF THE MEAN SQUARE SUCCESSIVE DIFFERENCE TO THE VARIANCE

By John von Neumann

Institute for Advanced Study

1. Introduction. In our previous paper it was found convenient to assume that the number \(m \) (of the variables of the quadratic form under consideration) is even. (Cf. p. 383, loc. cit.) This means that in the application to the mean square successive difference \(n = m + 1 \) must be odd. (Cf. p. 389, id.)

In this note we shall show that the distribution for an odd \(m \) (i.e. an even \(n \)) can be expressed by means of the distribution for an even \(m \)—the latter being already known, loc. cit.

Specifically, consider the distribution of \(\gamma = \sum_{\mu=1}^{m} a_{\mu}x_{\mu}^2, \) if the \(x_1, \cdots, x_m \) are equidistributed over the surface \(\sum_{\mu=1}^{m} x_{\mu}^2 = 1. \) Denote the \(m \)-uplet \((a_1, \cdots, a_m)\) by \(A, \) then the distribution function of \(\gamma \) depends on \(A; \) denote that distribution by \(\omega_A(\gamma). \) (Cf. p. 372 id., we write \(a_\mu \) for the \(B_\mu \) there.)

Now consider an \(m \)-uplet \(A = (a_1, \cdots, a_m) \) and a \(p \)-uplet \(B = (b_1, \cdots, b_p) \) and form the \(m + p \)-uplet \(C = (a_1, \cdots, a_m, b_1, \cdots, b_p). \) Write \(C = A + B. \) Then we shall show that there exists a simple expression for \(\omega_C(\gamma) \) in terms of \(\omega_A(\gamma) \) and \(\omega_B(\gamma). \)

For the specific application to the mean square successive difference, we can put \(n = m + 1, \) \(A = (\cos \frac{\pi \mu}{n} \text{ for } \mu = 1, \cdots, \frac{3n}{2} - 1), \) \(B = (0), \) \(C = A + B = (\cos \frac{\pi \mu}{n} \text{ for } \mu = 1, \cdots, n - 1). \)

2. The recursion formula. We proceed as follows. \(\omega_A(\gamma) \) can also be used to express the joint statistics of

\[\gamma = \sum_{\mu=1}^{m} a_{\mu}x_{\mu}^2 \quad \text{and} \quad \rho = \sum_{\mu=1}^{m} x_{\mu}^2, \]

or better, the volume of that part of the \(x_1, \cdots, x_m \)-space which corresponds to any given domain in the \(\gamma, \rho \)-plane. Thus the volume corresponding to a

\[\text{Cf. the paper by the same author, Annals of Math. Stat., vol. 12(1941), pp. 367-395.} \]

[1] Also Scientific Advisory Committee of the Ballistic Research Laboratory, Aberdeen Proving Ground.