TABULATION OF THE PROBABILITIES FOR THE RATIO OF THE MEAN SQUARE SUCCESSIVE DIFFERENCE TO THE VARIANCE

BY B. I. HART

Ballistic Research Laboratory, Aberdeen Proving Ground

with a note

BY JOHN VON NEUMANN

In recent publications von Neumann has determined the distribution of \(\delta^2/\sigma^2 \), the ratio of the mean square successive difference to the variance, for odd values of the sample size \(n \) and for even values of \(n \). In this paper the probability function, i.e., the integral of the distribution, is evaluated for specific values of \(n \).

Let \(x \) be a stochastic variable normally distributed with mean \(\mu \) and standard deviation \(\sigma \). The following customary definitions for the sample are:

the mean, \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \),

the variance, \(s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \),

and the mean square successive difference, \(\delta^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i+1} - x_i)^2 \). Letting \(\frac{\delta^2}{\sigma^2} = \frac{2n}{n-1} (1 - \epsilon) \), von Neumann shows that the distribution of \(\epsilon \), \(\omega(\epsilon) \), is symmetrical with zero mean and intercepts equal to \(\pm \cos \frac{\pi}{n} \) (loc. cit.\(^1\), p. 372), and that \(\omega(\epsilon) \) is determined for odd values of \(n \) by

\[
\frac{d^{(n-1)-1}}{d\epsilon^{(n-1)-1}} \omega(\epsilon) = \pm \frac{\left(\frac{1}{2}[n - 1] - 1 \right) !}{\pi} \frac{1}{\sqrt{\prod_{j=1}^{n-1} \left(\epsilon - \cos \frac{\mu \pi}{n} \right)}}\]

in the odd intervals

\[
\frac{\cos \frac{\pi}{n}}{n} \geq \epsilon \geq \cos \frac{2\pi}{n},
\]

\[
\frac{\cos \frac{3\pi}{n}}{n} \geq \epsilon \geq \cos \frac{4\pi}{n}, \ldots, \frac{\cos \frac{(n-2)\pi}{n}}{n} \geq \epsilon \geq \cos \frac{(n-1)\pi}{n},
\]
