THE APPROXIMATE DISTRIBUTIONS OF THE MEAN AND VARIANCE OF A SAMPLE OF INDEPENDENT VARIABLES

By P. L. Hsu

The National University of Peking

1. Introduction. In this paper we shall study the mean and variance of a large number, n (a sample of size n) of mutually independent random variables:

$$\xi_1, \xi_2, \cdots, \xi_n,$$

having the same probability distribution represented by a (cumulative) distribution function P(x). The rth moment, absolute moment, and semi-invariant of P(x) are denoted by α_r , β_r , and γ_r respectively. It is assumed that for a certain integer $k \geq 3$, $\beta_k < \infty$ and that $\alpha_2 > 0$. Hence there is no loss of generality in assuming that

$$\alpha_1=0, \quad \alpha_2=1.$$

The characteristic function corresponding to P(x) is denoted by p(t). We put

(3)
$$\bar{\xi} = \frac{1}{n} \sum_{r=1}^{n} \xi_r, \quad \eta = \frac{1}{n} \sum_{r=1}^{n} (\xi_r - \bar{\xi})^2$$

(4)
$$F(x) = Pr\{\sqrt{n}\,\bar{\xi} \le x\}, \qquad G(x) = Pr\left\{\frac{\sqrt{n}(\eta-1)}{\sqrt{\alpha\mu-1}} \le x\right\}.$$

The definition of G(x) implies that $\alpha_4 < \infty$ and $\alpha_4 - 1 > 0$. The case $\alpha_4 - 1 = 0$ provides an easy degenerated case which will be treated separately (section 4). Cramér's theorem of asymptotic expansion reads as follows:

THEOREM 1. If P(x) is non-singular and if $\beta_k < \infty$ for some integer $k \geq 3$, then

(5)
$$F(x) = \Phi(x) + \Psi(x) + R(x)$$

where

(6)
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^{2}} dy.$$

 $\Psi(x)$ is a certain linear combination of successive derivatives $\Phi^{(3)}(x), \dots, \Phi^{(3(k-3))}(x)$ with each coefficient of the form $n^{-\frac{1}{2}}$ times a quantity depending only on k, α_3 , \cdots , α_{k-1} $(1 \le \nu \le k-3)$ and

$$|R(x)| \leq Q/n^{\frac{1}{2}(k-2)}$$

where Q is a constant depending only on k and P(x).

www.jstor.org

¹ H. Cramér: Random Variables and Probability Distributions (1937), Ch. 7. This book will be referred to as (C).