NOTES

This section is devoted to brief research and expository articles, notes on methodology and other short items.

ESTIMATING THE PARAMETERS OF A RECTANGULAR DISTRIBUTION

By A. GEORGE CARLTON

Columbia University

1. Introduction. In this note, the range and midrange of the sample are shown to be a pair of sufficient statistics, and maximum likelihood estimates, for the true range and true mean of a rectangular distribution; exact and limiting distribution of midrange, range, and their ratio are derived; the "efficiencies" of the sample mean and median as estimates of the true mean are calculated; and the limiting distribution of the difference between two sample midranges is derived. All the limiting distributions are non-normal, and the error of estimate is of order n^{-1} rather than the customary order n^{-1} . The limiting distribution of midrange, and the limiting ratio of variances of the midrange and sample mean were given by Fisher [1].

f(x) and F(x) are used throughout to designate the probability density function of x and the distribution function (cumulative probability function) of x; the argument will also indicate the random variable being considered.

2. Exact distribution of midrange, range, and their ratio. Let x_1, \dots, x_n be a set of n independent observations on a random variable having the rectangular distribution f(x) = 1/L, $(\theta - L/2 \le x \le \theta + L/2)$, where θ is the true mean, and L the true range. The minimum observation u and the maximum observation v are a pair of sufficient statistics for θ and L, as the conditional distribution of the remaining observations for given u and v is independent of θ and L:

$$f(x_1, \dots, x_n \mid u, v) = (v - u)^{-(n-2)}$$

The midrange $\bar{\theta} = \frac{1}{2}(u+v)$ and the range $\bar{L} = v - u$ are maximum likelihood estimates of θ and L, respectively, as they are the parameter values which uniquely maximize $f(x_1, \dots, x_n)$ for the given set of observations. We shall assume that the random variable is normalized by change of origin and change of scale so that $\theta = 0$ and L = 1. The joint probability density function of u and v is

(1)
$$f(u,v) = \frac{d^2 F(u,v)}{dv d(-u)} = \frac{d^2 (v-u)^n}{dv d(-u)} = n(n-1)(v-u)^{n-2}, \qquad (-\frac{1}{2} \le u \le v \le \frac{1}{2}).$$