ABSTRACTS OF PAPERS

Presented on August 21, 1946, at the Cornell meeting of the Institute

1. A Test of Randomness in Two Dimensions. Howard Levene, Columbia University.

A square of side N is divided into N^2 unit cells, and each cell takes on the characteristics A or B with probabilities p and q=1-p respectively, independently of the other cells. A cell is an "upper left corner" if it is A and the cell above and cell to the left are not A. Let V_1 be the total number of upper left corners and let V_2 , V_3 , V_4 be the number of similarly defined upper right, lower right, and lower left corners respectively. Let $V=(V_1+V_2+V_3+V_4)/4$. It is proved that V is normally distributed in the limit with $E(V)=p(Nq+p)^2$ and $\sigma^2(V)\sim N^2pq^2(4-20p+45p^2-27p^3)/4$. The conditional limit distribution of V when p is estimated from the data, and the limit distribution of a related quadratic form are also obtained. These statistics are in a sense a generalization of the run statistics used for testing randomness in one dimension.

2. Asymptotic Distribution of Moments from a System of Linear Stochastic Difference Equations. Herman Rubin, Cowles Commission for Research in Economics

Let $\sum_{\tau=0}^{\infty} B_{\tau} y'_{t-\tau} + \Gamma z'_{t} = u'_{t}$, $(t=1,2,\cdots)$, be a complete system of linear stochastic difference equations determining y_{ti} (the coordinates of y_{t}), t>0, in terms of y_{ti} , $t\leq 0$, and z_{tk} (the coordinates of z_{t}), which are assumed to be fixed variates, and the random variables u_{ti} (the coordinates of u_{t}). Such a system is called a stable if for every bounded set of fixed variates, and $E(u'_{t}u_{t})$ uniformly bounded, $E(y'_{t}y_{t})$ is uniformly bounded. This condition is shown to be equivalent to $\sum |h_{ij\tau}|$ finite, where $y'_{t} = \sum_{\tau=0}^{\infty} H_{\tau}(u'_{t-\tau} - \Gamma z'_{t-\tau}) + \sum_{\nu=0}^{\infty} J_{t,\nu} y'_{-\nu}$ is the solution of the above difference equation. Let Q_{t} be an infinite quadratic form in $y_{t-\tau,i}$ and $z_{t-\nu,k}$ (τ , $\nu=0,1,\cdots$) with coefficients depending only on i, k, τ , and ν . Such a quadratic form is called convergent if the sum of the absolute values of the coefficients is finite. It is shown under fairly general conditions that the mean of a convergent quadratic form is asymptotically normally distributed with variance $0\left(\frac{1}{T}\right)$.

3. Conditional Expectation and Unbiased Sequential Estimation. David Blackwell, Howard University.

It is shown that $E[f(x_{\alpha})E_{\alpha}y] = E(fy)$ whenever E(fy) is finite, and that $\sigma^2(E_{\alpha}y) \leq \sigma^2(y)$, with equality holding only if $E_{\alpha}y = y$, where $E_{\alpha}y$ denotes the conditional expectation of y with respect to the family of chance variables x_{α} . These results imply that whenever there is a sufficient statistic u and an unbiased estimate t, not a function of u only, for a parameter p, the function $E_u t$, which is a function of u only, is an unbiased estimate for p with variance smaller than that of t. A sequential unbiased estimate for a parameter is obtained, such that when the sequential test terminates after i observations, the estimate is a function of a sufficient statistic for the parameter with respect to these observations. A special case of this estimate is that obtained by Girshick, Mosteller, and Savage (Annals of Math. Stat., Vol. XVII (1946), pp. 13-23) for the parameter of a binomial distribution.

4. A Discussion of the Ehrenfest Model. Preliminary report. Mark Kac, Cornell University.

A particle moves along a straight line in steps Δ , the duration of each step being τ . The probabilities that the particle at $k\Delta$ will move to the right or left are (1/2)(1 - k/R)