A NOTE ON CUMULATIVE SUMS

By Charles Stein

Columbia University

Let $\{Z_i\}$ be a denumerable sequence of identical independent real-valued random variables. Two constants a>0>b are chosen and the random variable n defined as the smallest integer for which one of the inequalities $\sum_{i=1}^{n} Z_i \geq a$ $\sum_{i=1}^{n} Z_i \leq b$ holds. For any events E_1 and E_2 , $P\{E_1\}$ will denote the probability of the event E_1 and $P\{E_1 \mid E_2\}$ the conditional probability of the event

It will be shown that there exists $t_0 > 0$ such that the moment generating function, Ee^{nt} exists for any complex number t whose real part is less than or equal to t_0 , and as an immediate consequence that n has finite moments of all orders.

If d is any constant satisfying b < d < a, then, for fixed m,

(1)
$$P\left\{b < \sum_{i=1}^{m} Z_{i} + d < a\right\} \leq P\left\{\left|\sum_{i=1}^{m} Z_{i}\right| < c\right\}$$

where c = |a| + |b|. We exclude the case $P\{Z_i = 0\} = 1$. Then there exists $\epsilon > 0$ such that either

$$\delta_1 = P\{Z_i \geq \epsilon\} > 0 \text{ or } \delta_2 = P\{Z_i \leq -\epsilon\} > 0.$$

Taking, for example, the former alternative with $m_1 = \begin{bmatrix} c \\ -\frac{1}{\epsilon} \end{bmatrix} + 1$,

(2)
$$P\left\{\left|\sum_{1}^{m_1} Z_i\right| \geq c\right\} \geq P\left\{Z_i \geq \epsilon \text{ for } i = 1, \dots, m_1\right\} = \delta_1^{m_1} > 0$$

where [w] denotes the largest integer less than or equal to w. For any pointive integer k,

$$\frac{P\{n > km_1\}}{P\{n > (k-1)m_1\}} = P\{n > km_1 \mid n > (k-1)m_1\}$$

$$\leq P\left\{b < \sum_{i=1}^{km_1} Z_i < a \mid b < \sum_{i=1}^{s} Z_i < a \text{ for } s = 1, \dots, (k-1)m_1\right\}$$

since n > km implies $b < \sum_{i=1}^{km_1} Z_i < a$.

 E_1 given that E_2 has occurred.

But $\sum_{i=1}^{km_1} Z_i = \sum_{i=1}^{(k-1)m_1} Z_i + \sum_{i=1}^{km_1} Z_i$ and the second sum on the right hand side is independent of all terms in the first sum.