NOTE ON DIFFERENTIATION UNDER THE EXPECTATION SIGN IN THE FUNDAMENTAL IDENTITY OF SEQUENTIAL ANALYSIS

By T. E. HARRIS

Princeton University

Let z be any chance variable and z_1 , z_2 , z_3 , \cdots a sequence of independent chance variables, each with the same distribution as z. Let $Z_N = z_1 + z_2 + \cdots + z_N$. Let $\phi(t) = Ee^{zt}$ for all complex t for which the latter exists. Let S_1 , S_2 , \cdots be a sequence of mutually exclusive events such that S_j depends only on z_1 , z_2 , \cdots , z_j , and $\sum_{j=1}^{\infty} P(S_j) = 1$. Let the chance variable n be defined as n = j when S_j occurs. Blackwell and Girshick [1], generalizing a result of Wald [2], showed that if there is a positive constant M such that

$$|Z_N| < M \text{ when } n > N$$

then the identity

(2)
$$E\{e^{Z_n t}(\phi(t))^{-n}\} = 1$$

holds for all complex t for which $\phi(t)$ exists and $|\phi(t)| \geq 1$. Wald [3] established conditions, including the existence of $\phi(t)$ for all real t, under which (2) may be differentiated under the expectation sign an unlimited number of times.

Without assuming the existence of $\phi(t)$ for a real t-interval the following result holds: If (1) is true and if $E(z^k)$ and $E(n^k)$ are both finite, k a positive integer, then

(3)
$$E\left\{\frac{d^k}{ds^k}\left[e^{z_n is}(\phi(is))^{-n}\right]_{s=0}\right\} = 0$$

where $i = \sqrt{-1}$ and s is real. Certain identities, obtained by differentiating (2) and putting t = 0, can also be obtained from (3). For example, if En = 0, and if En^2 and Ez^2 both exist then $EZ_n^2 = Ez^2En$.

Let $P_N = P(n \leq N)$; $p_N = P(n = N)$. Let $H(j, Z_j)$ and $F(N, Z_N)$ be the conditional cumulatives of Z_j and Z_N for n = j and n > N respectively. Now (2) was derived by Wald [2], p. 285, from a relation, valid whenever $\phi(t)$ exists, which in the present notation becomes

(4)
$$\sum_{j=1}^{N} p_{j} \int_{-\infty}^{\infty} (\phi(t))^{-j} e^{z_{j}t} dH(j, Z_{j}) + \frac{(1 - P_{N})}{(\phi(t))^{N}} \int_{-\infty}^{\infty} e^{z_{N}t} dF(N, Z_{N}) = 1.$$

Examination of Wald's derivation of (4) shows it to be valid under the present hypotheses. Now the finiteness of $E(z^k)$ clearly implies that of $E(Z_i^k | n = j)$. Also, since $F(N, Z_N)$ is constant outside the interval [-M, M], the integral $\int_{-\infty}^{\infty} Z_N^k dF(N, Z_N)$ is finite. Hence we may set t = is in (4) and differentiate