THE POINT BISERIAL COEFFICIENT OF CORRELATION

By Joseph Lev

New York State Department of Civil Service

The product moment coefficient of correlation between a continuous variate y and a variate x which takes the values 1 and 0 only, is known in psychological statistics as the point biserial coefficient of correlation. Let y_i , $i=1, \dots, n$, be observations on y; y_{1i} , $i=1, \dots, n_1$, be y values which are paired with the value x=1; y_{0i} , $i=1, \dots, n_0$, be values paired with x=0; \bar{y} , \bar{y}_1 , and \bar{y}_0 be the corresponding means; and $n=n_1+n_0$. Then the point biserial coefficient of correlation may be written

(1)
$$r = \frac{\sqrt{\frac{n_1 n_0}{n}} (\bar{y}_1 - \bar{y}_0)}{\left[\sum_{i=0}^{1} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2\right]^{\frac{1}{2}}}.$$

The distribution of r is readily obtained when the y_i , $i=1,\dots,n$, are distributed as

(2)
$$\frac{1}{\sqrt{2\pi}\sigma\sqrt{1-\rho^2}}\exp\left[\frac{-1}{2\sigma^2(1-\rho^2)}(y_i-\alpha-\rho\sigma z_i)^2\right]$$

where

$$z_i = rac{x_i - ar{x}}{\sigma_x} = egin{cases} \sqrt{rac{n_0}{n_1}}, & i = 1, 2, \cdots, n_1, \\ -\sqrt{rac{n_1}{n_0}}, & i = n_1 + 1, n_1 + 2, \cdots, n_n \end{cases}$$

 σ^2 is the variance of the y_i about the common mean α , and ρ is the parameter which represents the correlation between the y_i and the x_i . It is easy to verify that the statistic in (1) is a maximum likelihood estimate of ρ .

It will be convenient to express the two population means in (2) as μ_1 and μ_0 so that

(3)
$$\mu_1 = \alpha + \rho \sigma \sqrt{\frac{n_0}{n_1}},$$

$$\mu_0 = \alpha - \rho \sigma \sqrt{\frac{n_1}{n_0}}.$$

Hence

$$\rho = \sqrt{\frac{n_1 n_0}{n}} \frac{\mu_1 - \mu_0}{\sigma}.$$