ON A THEOREM OF HSU AND ROBBINS

BY P. ERDŐS

Syracuse University

Let \(f_1(x), f_2(x), \ldots \) be an infinite sequence of measurable functions defined on a measure space \(X \) with measure \(m, m(X) = 1 \), all having the same distribution function \(G(t) = m(x; f_k(x) \leq t) \). In a recent paper Hsu and Robbins' prove the following theorem: Assume that

\[
(1) \quad \int_{-\infty}^{\infty} t \, dG(t) = 0,
\]

\[
(2) \quad \int_{-\infty}^{\infty} t^2 \, dG(t) < \infty.
\]

Denote by \(S_n \) the set \(\left(x; \sum_{k=1}^{n} f_k(x) > n \right) \), and put \(M_n = m(S_n) \). Then \(\sum_{n=1}^{\infty} M_n \) converges.

It is clear that the same holds if \(\sum_{k=1}^{n} f_k(x) > n \) is replaced by \(\sum_{k=1}^{n} f_k(x) > c \cdot n \) (replace \(f_k(x) \) by \(c \cdot f_k(x) \)).

It was conjectured that the conditions (1) and (2) are necessary for the convergence of \(\sum_{n=1}^{\infty} M_n \). Dr. Chung pointed it out to me that in this form the conjecture is inaccurate; to see this it suffices to put \(f_k(x) = \frac{1}{4}(1 + r_k(x)) \) where \(r_k(x) \) is the \(k \)th Rademacher function. Clearly \(|f_k(x)| < 1 \); thus \(M_n = 0 \), thus \(\sum_{n=1}^{\infty} M_n \) converges, but \(\int_{-\infty}^{\infty} t \, dG(t) \neq 0 \). On the other hand we shall show in the present note that the conjecture of Hsu and Robbins is essentially correct. In fact we prove

Theorem I. The necessary and sufficient condition for the convergence of \(\sum_{n=1}^{\infty} M_n \) is that

\[
(1') \quad \int_{-\infty}^{\infty} t \, dG(t) < 1,
\]

and (2) should hold.

In proving the sufficiency of Theorem I, we can assume without loss of generality that (1) holds. It suffices to replace \(f_k(x) \) by \((f_k(x) - C) \) where \(C = \int_{-\infty}^{\infty} t \, dG(t) \).

The following proof of the sufficiency of Theorem I (in other words essentially for the theorem of Hsu and Robbins) is simpler and quite different from theirs. Put

\[
(3) \quad a_i = m(x; |f_k(x)| > 2^i),
\]

286