SMOOTHEST APPROXIMATION FORMULAS

By Arthur Sard¹

Queens College

Introduction. Consider a process of approximation which operates on a function x = x(t). The error in the process may be thought of as a sum $R + \delta A$, where R is the error that would be present if x were exact and δA is the error due to errors in x. (Precise definitions are given below.) Suppose that one wishes to choose one process A from a class \mathcal{C} of processes. In some situations it is appropriate to base the choice on R alone²; in others it is appropriate to consider δA .

The primary purpose of the present note is to formulate a criterion of smoothest approximation: That A in \mathcal{C} is smoothest which minimizes the variance of δA . A criterion based on both R and δA is also suggested. (Sections 1 and 2.) Smoothest approximate integration formulas of one type are derived in Section 3.

Progress in the technique of estimating the covariance function of the errors in x will lead to further applications of the criterion of smoothest approximation.

1. Approximation of a functional. Suppose that X is a space of functions x = x(t) each of which is continuous on $a \le t \le b$. Let f[x] be a functional defined on X; that is, f[x] is a real number defined for each $x \in X$. For example, X might be the space of functions with second derivatives on [a, b] and f[x] might be x''(u), where u is a fixed number in [a, b].

Suppose that f[x] is to be approximated by a Stieltjes integral

(1)
$$A = \int_a^b x(t) d\alpha(t), \qquad x \in X,$$

where α is a function of bounded variation. The remainder in the approximation of f[x] by A is

$$R = A - f[x].$$

If the approximation (1) operates on $x + \delta x$ instead of x, the result is $A + \delta A = \int_{t-a}^{b} (x + \delta x) d\alpha$; and the error in the approximation of f[x] by $A + \delta A$ is $R + \delta A$, where

(2)
$$\delta A = \int_a^b \delta x(t) \ d\alpha(t).$$

Consider a class \mathcal{C} of approximations A, each of the form (1). We shall propose a criterion for characterizing the "smoothest A" in \mathcal{C} , relative to the covariance function of the errors δx .

¹ The author gratefully acknowledges financial support received from the Office of Naval Research.

² "Best approximate integration formulas; best approximation formulas," Amer. Jour. of Math., Vol. 71 (1949), pp. 80-91.