A PROPERTY OF SOME TESTS OF COMPOSITE HYPOTHESES

By C. M. Stein

University of Chicago

In all common statistical tests, a result significant at the 1 per cent level is necessarily significant at the 5 per cent level. In this note we show that this statement is not true for all statistical tests. More precisely, for any α_1 , α_2 satisfying $0 < \alpha_1 < \alpha_2 < 1$, we construct a composite hypothesis H_0 and a simple hypothesis H_1 such that there are sets w_1 , w_2 in the sample space which are the unique most powerful critical regions of size α_1 , α_2 , respectively, for testing H_0 against H_1 . Furthermore, w_1 , w_2 are similar regions. But w_2 does not contain w_1 .

Let X be a random variable which can take one of the four values 1, 2, 3, 4. Let H_0 consist of two simple hypotheses H'_0 and H''_0 , where H'_0 states that $P\{X=i\}=p'_i$, and H''_0 states that $P\{X=i\}=p''_i$; and let H_1 state that $P\{X=i\}=p_i$ for i=1,2,3,4. Later, we shall determine appropriate positive values for the p_i , p'_i , p''_i . Let $\pi'_i=p'_i/p_i$, $\pi''_i=p''_i/p_i$. By a slight modification of the Neyman-Pearson lemma [1] (see also [2]), the region w_1 consisting of the points x=1 and x=2, and the region w_2 consisting of the points x=1 and x=3, are both most powerful critical regions and similar if and only if

(a)
$$p_1 \pi_1' + p_2 \pi_2' = p_1 \pi_1'' + p_2 \pi_2'', \\ p_1 \pi_1' + p_3 \pi_3' = p_1 \pi_1'' + p_3 \pi_3'';$$

(b) there exist constants a_1 , a_2 , b_1 , $b_2 \ge 0$ with $a_1 + b_1 > 0$, $a_2 + b_2 > 0$, such that $a_1\pi_1' + b_1\pi_1''$, $a_1\pi_2' + b_1\pi_2''$ are both less than or equal to $a_1\pi_3' + b_1\pi_3''$, $a_1\pi_4' + b_1\pi_4''$, and $a_2\pi_1' + b_2\pi_1''$, $a_2\pi_3' + b_2\pi_3''$ are both less than or equal to $a_2\pi_2' + b_2\pi_2''$, $a_2\pi_4' + b_2\pi_4''$. Expressed geometrically in the (π', π'') -plane, if a_1 , a_2 , b_1 , $b_2 > 0$ and "less than" holds in all the above relations (which will will always be the case in our construction), this means that the line joining points 2 and 3 intersects both axes at positive values, and the point 1 is inside and point 4 outside the triangle formed by this line and the coordinate axes. Of course H_0' , H_0'' , H_1 are all probability distributions and all of the points 1, 2, 3, 4 are to have positive probabilities, so that we want

(c)
$$\sum p_i = 1, \qquad \sum p_i \pi'_i = 1, \qquad \sum p_i \pi''_i = 1;$$

(d) $p_i > 0, \qquad \pi'_i > 0, \qquad \pi''_i > 0.$

We shall show that conditions (a), (b), (c), (d) can be satisfied in a great variety of ways. Choose π'_{i0} , π''_{i0} so that $\pi''_{10} > \pi'_{10}$, $\pi'_{20} > \pi''_{20}$, $\pi''_{30} > \pi''_{30}$, $\pi''_{40} > \pi''_{40}$, and (b) is satisfied when π'_{i} , π''_{i} are replaced by π'_{i0} , π''_{i0} , respectively. Let p_{10} be an arbitrary nonnegative number. Choose p_{20} , $p_{30} \geq 0$ so that

(1)
$$p_{10} \pi'_{10} + p_{20} \pi'_{20} = p_{10} \pi''_{10} + p_{20} \pi''_{20}, \\ p_{10} \pi'_{10} + p_{20} \pi'_{30} = p_{10} \pi''_{10} + p_{30} \pi''_{30}.$$