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We can characterize (2) as saying: Let # be the linear estimate of minimum
variance of r, which is a linear combination of =, --- , 7, and let #(x) be the
estimate of the variance of # based on s*. Then the confidence interval statements

# — KFH@))? £ 7 £ # + [kFH(m)]",

simultaneously for all , are correct with probability 1 — «. This result is con-
tained in [1] and [2].

The quantity D* = D =} is a conventional measure of the “distance” of the
null hypothesis that = = --- = m, = 0 from the true state of nature. The
power of the analysis of variance test depends only on D*/q¢". Hence it would be
useful for the experimenter to obtain some information about D.

Making use of the triangle inequality, it follows from (1) that

1 —a 2 Pr{(X #)" — (kF.sH)'? £ D £ (3 #D)"* + (kFas%)'"}.

The quantity D #; = Q1 is what the experimenter calculates as the “sum of
squares due to hypothesis.” Hence, instead of just making the statements about
the functions x, we can make the simultaneous estimates

# — kFd(@)]"® £ 7 £ # + [kFH(x)]"%, forallm = Y amr;,

Q — (kF.sH)'? < D < Q + (kFs)",
with the probability of being correct equal to 1 — a.
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AN INEQUALITY ON POISSON PROBABILITIES

By HENRY TEICHER |
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This note proves an inequa]jty concerning the exponential series or Poisson
distribution, however one prefers to view the matter. Specifically, it will be shown
that if [\] is the greatest integer not exceeding A,
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1SRN & for all X = 0;
- >
=gl 3 for all integral X > 0.
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