We can characterize (2) as saying: Let $\hat{\pi}$ be the linear estimate of minimum variance of π , which is a linear combination of π_1 , \cdots , π_k , and let $\hat{v}(\pi)$ be the estimate of the variance of $\hat{\pi}$ based on s^2 . Then the confidence interval statements

$$\hat{\pi} - [kF_{\alpha}\hat{v}(\pi)]^{1/2} \leq \pi \leq \hat{\pi} + [kF_{\alpha}\hat{v}(\pi)]^{1/2},$$

simultaneously for all π , are correct with probability $1 - \alpha$. This result is contained in [1] and [2].

The quantity $D^2 = \sum \pi_i^2$ is a conventional measure of the "distance" of the null hypothesis that $\pi_1 = \cdots = \pi_k = 0$ from the true state of nature. The power of the analysis of variance test depends only on D^2/σ^2 . Hence it would be useful for the experimenter to obtain some information about D.

Making use of the triangle inequality, it follows from (1) that

$$1 - \alpha \leq \Pr\{(\sum \hat{\pi}_i^2)^{1/2} - (kF_{\alpha}s^2)^{1/2} \leq D \leq (\sum \hat{\pi}_i^2)^{1/2} + (kF_{\alpha}s^2)^{1/2}\}.$$

The quantity $\sum \hat{\pi}_i^2 = Q_1^2$ is what the experimenter calculates as the "sum of squares due to hypothesis." Hence, instead of just making the statements about the functions π , we can make the simultaneous estimates

$$\hat{\pi} - [kF_{\alpha}\hat{v}(\pi)]^{1/2} \le \pi \le \hat{\pi} + [kF_{\alpha}\hat{v}(\pi)]^{1/2}, \quad \text{for all } \pi = \sum a_i\pi_i,$$

$$Q_1 - (kF_{\alpha}s^2)^{1/2} \le D \le Q_1 + (kF_{\alpha}s^2)^{1/2},$$

with the probability of being correct equal to $1 - \alpha$.

REFERENCES

 H. Scheffé, "A method for judging all contrasts in the analysis of variance," Biometrika, Vol. 40 (1953), pp. 87-104.

[2] S. N. Roy and R. C. Bose, "Simultaneous confidence interval estimation," Ann. Math. Stat., Vol. 24 (1953), pp. 513-536.

AN INEQUALITY ON POISSON PROBABILITIES

BY HENRY TEICHER

Purdue University

This note proves an inequality concerning the exponential series or Poisson distribution, however one prefers to view the matter. Specifically, it will be shown that if $[\lambda]$ is the greatest integer not exceeding λ ,

1)
$$\sum_{j=0}^{\lfloor \lambda \rfloor} \frac{\lambda^{j}}{j!} > \begin{cases} e^{\lambda - 1} & \text{for all } \lambda \geq 0; \\ \frac{1}{2}e^{\lambda} & \text{for all integral } \lambda > 0. \end{cases}$$

Received February 16, 1954.