NOTES

ON A SEQUENTIAL TEST FOR THE GENERAL LINEAR HYPOTHESIS¹

BY PAUL G. HOEL

University of California, Los Angeles

- 1. Introduction. A few years ago I reported [1] on a sequential method for testing the general linear hypothesis, but held up publication until some of the properties of the method had been investigated further. Johnson [2] recently published a paper in which he obtained the same sequential test, but from an entirely different point of view. His method of derivation is based on showing, by means of a theorem of Cox [3], that the likelihood ratio approach to the problem can be used successfully. My method is a direct generalization of Wald's sequential t-test. This note outlines the nature of this generalization, and also points out some additional properties of the test.
- **2. Method.** The general linear hypothesis assumes that the variables x_1 , x_2 , \cdots , x_l with means μ_1 , μ_2 , \cdots , μ_l and common variance σ^2 possess the frequency function

(1)
$$f(x_1, \dots, x_l) = (2\pi\sigma)^{-l} \exp\left\{\frac{-1}{2\sigma^2} \left[\sum_{i=1}^k (x_i - \mu_i)^2 + \sum_{i=k+1}^l x_i^2\right]\right\}.$$

It tests the hypothesis H_0 : $\mu_1 = \cdots = \mu_p = 0$, for $p \leq k$. The means μ_{k+1}, \dots, μ_l have the value zero. The parameters μ_{p+1}, \dots, μ_k , and σ are nuisance parameters, and therefore make H_0 a composite hypothesis.

Following Wald's [4] procedure and notation for the sequential t-test, let the parameter space Ω be divided into the three regions ω_a , ω_r , and $\Omega - \omega_a - \omega_r$. The region ω_a will be chosen as that part of Ω where H_0 holds. The region ω_r will be chosen as that part of Ω where

$$\sum_{i=1}^p \frac{\mu_i^2}{\sigma^2} \ge \lambda_0$$

where λ_0 is a selected constant. The boundary of ω_r will be denoted by S_r . As normalized weight functions choose

$$v_{a}(\theta) = \begin{cases} a_{1} \sigma^{b_{1}} \left(2c\right)^{p-k}, & 0 \leq \sigma \leq c, |\mu_{i}| \leq c, i = p+1, \cdots, k, \\ 0, & \text{elsewhere}; \end{cases}$$

$$v_{r}(\theta) = \begin{cases} a_{2} \sigma^{b_{2}} \left(2c\right)^{p-k}, & 0 \leq \sigma \leq c, |\mu_{i}| \leq c, i = p+1, \cdots, k, \\ 0, & \text{elsewhere}. \end{cases}$$

Received February 19, 1954.

¹ This research was sponsored by the O.N.R.