ON THE FOURIER SERIES EXPANSION OF RANDOM FUNCTIONS¹

By W. L. ROOT AND T. S. PITCHER

Massachusetts Institute of Technology

Problems involving stationary stochastic processes are often treated by approximating the original processes by Fourier series with orthogonal random coefficients.² In this paper we justify this technique in certain instances.

We let x(t) denote a real- or complex-valued stochastic process defined for all values of t. We assume the first and second moments of x(t) exist. We write $R(s, t) = E\{x(s)\overline{x(t)}\}$ and in case R(s, t) is a function of (t - s) only (that is, x(t) is stationary in the wide sense), we write $\rho(t - s) = R(s, t)$. We assume everywhere that $E\{x(t)\} = 0$.

We define the stochastic process x(t) to be *periodic* if the random variables $x(t_1)$ and $x(t_1 + T)$ are equal with probability one for all t_1 and some constant T. If x(t) is periodic, then R(s, t) is periodic in each variable. If x(t) is wide-sense stationary, then it is periodic if and only if $\rho(\tau)$ is periodic.

Our first result follows from the theorem due independently to Karhunen and Loève which states: Let x(t) be continuous in the finite interval (a, b), then

$$x(t) = \lim_{n \to \infty} \sum_{i=1}^{n} x_{i} \psi_{i}(t)$$

where the $\psi_i(t)$ form an orthonormal system over (a, b) and where $E\{x_i\overline{x_j}\} = \lambda_i\delta_{ij}$ if and only if the $\psi_i(t)$ and the λ_i are a system of eigenfunctions and eigenvalues of the integral equation

$$\int_a^b R(s,t)\overline{\psi(t)} \ dt = \lambda \overline{\psi(s)}.$$

Theorem 1. Let x(t) be a wide-sense stationary stochastic process continuous in mean square. Then

$$x(t) = \text{l.i.m.} \sum_{k=-n}^{n} \frac{x_i e^{ik\omega\tau}}{\sqrt{T}}, \qquad \omega = \frac{2\pi}{T},$$

on the interval (0, T), where the x_i are pairwise orthogonal if and only if x(t) is periodic with period T.

Proof. From the Karhunen-Loève theorem and the remark above about periodicity it follows that we need to show that

Received August 17, 1954.

¹ The research in this document was supported jointly by the Army, Navy, and Air Force under contract with the Massachusetts Institute of Technology.

² Of course, the use of Fourier series can usually be avoided by the use of the spectral representation theorem for stationary processes. See [1] p. 527.

313