ON THE EFFICIENCY OF EXPERIMENTAL DESIGNS1

By Sylvain Ehrenfeld

Columbia University

1. Introduction. Many models used in statistical investigations can be formulated in terms of least-square theory. The models that will be discussed can be stated as follows. Let y_1, \dots, y_N be N independently and normally distributed random variables with common variance σ^2 . It is assumed that the expected value of y_{α} is given by

$$(1.1) E(y_{\alpha}) = \beta_1 x_{\alpha 1} + \beta_2 x_{\alpha 2} + \cdots + \beta_r x_{\alpha r}, \qquad \alpha = 1, \cdots, N,$$

where quantities $x_{\alpha i}$ for $i=1, \dots, p$; $\alpha=1, \dots, N$ are known constants and β_1, \dots, β_p are unknown constants. The coefficients β_1, \dots, β_p are the population regression coefficients of y on x_1, x_2, \dots, x_p respectively. In matrix notation the above model can be expressed as

(1.2)
$$E(y) = X\beta$$

$$\beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \vdots \\ \beta_p \end{bmatrix}, \quad X = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ x_{N1} & \cdots & x_{Np} \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix},$$

The p column vectors in X will be denoted by x_1 , x_2 , \cdots , x_p where $x_j' = (x_{1j}, x_{2j}, \cdots, x_{Nj})$. In some cases the experimenter has some amount of freedom in the choice of the p vectors x_i . The efficiency and sensitivity of the design may be very much affected by the choice of the design matrix X. The choice of this matrix is equivalent to that of p vectors in N-dimensional Euclidean space.

A simple illustration is furnished by the following example. Suppose y_{α} are independent random variables with equal variance σ^2 , where $E(y_{\alpha}) = \beta_1(x_{\alpha} - \bar{x}) + \beta_2$. The x's are assumed to be fixed constants. Suppose, furthermore, that we have N pairs of observations $(x_1, y_1), \dots, (x_N, y_N)$ and we want to estimate β_1 . It is known that the variance of the least square estimate of β_1 is inversely proportional to $\sum_{\alpha} (x_{\alpha} - \bar{x})^2$. Hence, if we could choose values x_1, \dots, x_N in a domain T, we would choose them such that $\sum_{\alpha} (x_{\alpha} - \bar{x})$ is as large as possible.

In Section 2 we will prove a theorem about quadratic forms which, with the aid of other considerations, will motivate a criterion for the efficiency of a design matrix X. In Section 3 two theorems will be proved to aid in the applica-

247

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Mathematical Statistics.

www.jstor.org

Received July 3, 1953, revised May 7, 1954.

¹ Work partially sponsored by the Office of Naval 1 search.