A NOTE ON BHATTACHARYYA EOUNDS FOR THE NEGATIVE BINOMIAL DISTRIBUTION

By V. N. MURTY

University of North Carolina

In the lecture notes of Professor Lehmann on the theory of estimation [1], the first two Bhattacharyya lower bounds for the variance of an unbiased estimate of p for the negative binomial have been calculated. It is of some interest to know how the successive bounds turn out, and whether they tend to pq, which we know to be attainable. The object of the present note is to give an explicit expression for the k-th lower bound and show that it tends to pq.

If X has a negative binomial distribution, then we know that

(1)
$$P(X = x) = qp^{x} x = 0, 1, 2, \dots,$$

where q = 1 - p. Let

(2)
$$S_n = \frac{1}{P(x)} \cdot \frac{\partial^n P(x)}{\partial p^n}.$$

Then it is easily verified that

(3)
$$S_n = \frac{(-1)^n X^{(n)}}{q^n} + \frac{(-1)^{n-1} n X^{(n-1)}}{p q^{n-1}},$$

where

$$X^{(m)} = x(x-1) \cdot \cdot \cdot (x-m+1).$$

Therefore,

$$S_{m}S_{n} = \frac{(-1)^{m+n}}{q^{m+n}} \left[X^{(m)}X^{(n)} - \left(\frac{q}{p}\right) mX^{(m-1)}X^{(n)} - \left(\frac{q}{p}\right) nX^{(n-1)}X^{(m)} + \left(\frac{q}{p}\right)^{2} mnX^{(m-1)}X^{(n-1)} \right].$$

It is well known that

(5)
$$E[X^{(m)}] = m! \left(\frac{q}{p}\right)^m,$$

and we have the algebraic identity

(6)
$$X^{(m)}X^{(n)} \equiv \sum_{r=0}^{m} {m \choose r} n^{(r)} X^{(n+m-r)},$$

where $n^{(r)} = n(n-1) \cdot \cdot \cdot (n-r+1)$. Therefore,

(7)
$$E[X^{(m)}X^{n}] = \sum_{r=0}^{m} {m \choose r} n^{(r)} (n+m-r)! \left(\frac{q}{p}\right)^{n+m-r}.$$

Received February 21, 1955

Present address, Statistician, Central Tobacco Research Institute, Rajahmundry, Andhra State, India.