We shall now render the introductory conditions (A)-(B) exact. First, we write

(A)
$$\sigma(\zeta) \leq \epsilon \cdot \sigma(x_i), \qquad i = 1, \dots, h,$$

where $\epsilon \geq 0$. Then if ϵ is small, the disturbance ζ is small in the sense that its standard deviation is small relative to the standard deviations of the explanatory variables. To give condition (B) a convenient form we observe that for given r_1, \dots, r_h there is a point (r_1^*, \dots, r_h^*) on the boundary of the ellipsoid (4) and a proportionality factor ϵ' with $0 \leq \epsilon' \leq 1$ such that

(B)
$$r_i = \epsilon' \cdot r_i^*, \qquad i = 1, \dots, h.$$

Then if ϵ' is small, the correlations r_i are small in the sense that the point (r_1, \dots, r_h) lies near the centre of the ellipsoid.

Thus prepared, we obtain the following

COROLLARY. On conditions (a) and (b) of the lemma, we have

$$|b_i - \beta_i| \leq \epsilon \cdot \epsilon' / \sqrt{1 - R_i^2}, \qquad i = 1, \dots, h,$$

where ϵ and ϵ' are defined by (A)-(B).

Hence if ϵ and ϵ' are of small order the specification error of the regression coefficients b, will at most be of order $\epsilon\epsilon'$.

In the special case of one explanatory variable, h = 1, we have $R_1 = 0$ and $|b_1 - \beta_1| \le \epsilon \epsilon'$. For example, if $\sigma(\zeta) = \frac{1}{5}\sigma(x_1)$ and $r_1 = \rho(x_1, \zeta) = \frac{1}{5}$, the specification error of b_1 cannot exceed 0, 04.

REFERENCES

- H. Wold in Association with L. Juréen, Demand Analysis: A Study in Econometrics, Geber, Stockholm, 1952; and John Wiley and Sons, New York, 1953.
- 2. H. Wold, "A theorem on regression coefficients obtained from successively extended sets of variables," Skand. Aktuarietids., Vol. 28 (1945), pp. 181-200.

SETS OF MEASURES NOT ADMITTING NECESSITY AND SUFFICIENT STATISTICS OR SUBFIELDS^{1, 2}

By T. S. PITCHER³

Let X be the interval from 0 to 1 and F the field of Borel sets on X. For every $x \leq \frac{1}{2}$, let m_x be the probability measure assigning probability $\frac{1}{2}$ to the point x and probability $\frac{1}{2}$ to the point $(x + \frac{1}{2})$ and let F_x be the subfield of F consisting of all Borel sets which contain both x and $(x + \frac{1}{2})$ or else neither. Then if M is a set of probability measures consisting of all m_x , $0 \leq x < \frac{1}{2}$ and some measures assigning probability 0 to every point, the only set of m-measure zero

Received May 4, 1956; revised June 12, 1956.

¹ The research in this document was supported jointly by the Army, Navy, and Air Force, under contract with the Massachusetts Institute of Technology.

² For definitions of these concepts, see references [1] and [2].

³ Staff Member, M.I.T., Lincoln Laboratory.