and for some $\alpha > 2$ and constant C_2

$$(3.12) E |X_{\mathcal{M}}(t) - EX_{\mathcal{M}}(t)|^{\alpha} \leq C_2 \text{for all } t.$$

For M large enough, (3.11) follows from (3.1), (3.10) and (3.5). By Minkowski's inequality, (3.12) follows from (3.2) and (2.4). The proof of the theorem is now completed.

4. A remark on applications. One use of the foregoing central limit theorem is to provide conditions, without any further ado, for the asymptotic normality of various estimates of the spectrum of a stationary time series that have been considered by us (see [4]).

REFERENCES

- [1] M. S. Bartlett, An Introduction to Stochastic Processes, Cambridge, 1955.
- [2] P. H. DIANANDA, "Some probability limit theorems with statistical applications," Proc. Cambridge Philos. Soc., Vol. 49, (1953) pp. 239-246.
- [3] G. Marsaglia, "Iterated limits and the central limit theorem for dependent random variables," Proc. Amer. Math. Soc., Vol. 5 (1954), pp. 987-991.
- [4] E. Parzen, "On consistent estimates of the spectrum of a stationary time series," to be published.

ON THE ENUMERATION OF DECISION PATTERNS INVOLVING n MEANS¹

By R. L. Wine² and John E. Freund

Virginia Polytechnic Institute

- 1. Introduction. The purpose of this paper is to provide a mathematical treatment for the enumeration of decision patterns obtained in the pairwise comparison of n sample means. In the comparison of n means, there are altogether
- $\binom{n}{2}$ pairwise comparisons, and each individual comparison between two means, say m_1 and m_2 , must result in the decision that m_1 is significantly less than m_2 , that m_2 is significantly less than m_1 , or that there is no significant difference.

that m_2 is significantly less than m_1 , or that there is no significant difference. Symbolically, these three alternatives are written as $m_1 < m_2$, $m_2 < m_1$, and $m_1 = m_2$, respectively.

There are, thus, altogether $3^{\binom{n}{2}}$ possible decision sets in the comparison of n objects, a decision set consisting of the $\binom{n}{2}$ pairwise comparisons. However, for the comparison of n means, there are fewer decision sets since circularities are automatically ruled out.

Received May 14, 1956; revised July 6, 1956.

 $^{^1}$ Research sponsored by the Office of Ordnance Research Contract DA-36-034-ORD-1477, U.S. Army.

² This paper is a section of R. L. Wine's Ph.D. dissertation.