NOTES

AN EXTENSION OF THE OPTIMUM PROPERTY OF THE
SEQUENTIAL PROBABILITY RATIO TEST

By M. A. GirsHICK!

Stanford University

Let f(x, 6) be a family of densities or discrete probability functions depending
on the parameter 6. Let H, be the hypothesis § = 6, and H; the hypothesis
that 6. = 6. A sequential probability ratio test of Ho versus H; is defined by
two numbers A and B. After drawing the mth observation, sampling is con-
tinued if

61)

1 B < [t 4,
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where z;, -+, Zm are the first m observations. If the probability ratio is at

least equal to A, H; is accepted, and if it is not greater than B, H, is accepted.
For any sequential procedure T, let the operating characteristic be

(2) L(9, T) = Pr {Accepting H, | 6, T},

and let &(n | T') be the expected number of observations required by 7' when
sampling from f(z, 6). The so-called optimum property (see [5], for instance)
of a sequential probability ratio test, say T*, is that if L(6, T) = L(6,, T*)
and L6y, T) < L(6,, T*), then

800(”' [ T) = 800(”’ I T*)7 801(”' l T) = 801(" I T*)

In many cases this optimum property can be extended to all values of the
parameter. Suppose 6 < 0;, and let 8§ be a number to be defined later such that
8o < 8 < 6;. Under conditions stated below, we give the extended optimum
property. If

3) L@, T) = L, T*), 6 <86,
L6, T) = L6, T, 6>,

for all § = 8, then

4) & |T) 2 &(n|T*
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1 The result reported in this note was mentioned by the late M. A. Girshick to several
of his colleagues, but was unpublished at the time of his death. Since I think the result
is of sufficient interest to be in the literature, I have taken the liberty of writing this note
in Girshick’s name. T. W. Anderson.
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