and von Mises tests. A comparison of the power functions of these tests would be of great interest. Almost nothing is known of the small-sample power of any of these tests. The large-sample power of the chi-square test is known. It is the author’s conjecture that the limiting joint distribution of \(Q(n)\) and \(R_n(1; 1)\) is bivariate normal under the alternatives as well as under the hypothesis. If this conjecture could be proved, the asymptotic power of the proposed test would be known.

TABLES FOR OBTAINING NON-PARAMETRIC TOLERANCE LIMITS

BY PAUL N. SOMERVILLE

General Analysis Corporation, Sierra Vista, Arizona

The general consideration of non-parametric tolerance limits had its origin with Wilks [10]. Wilks showed that for continuous populations, the distribution of \(P\), the proportion of the population between two order statistics from a random sample, was independent of the population sampled, and was in fact a function only of the particular order statistics chosen. Wald [9] and Tukey [8] extended the method to multivariate populations, Tukey being responsible for the term “statistically equivalent block.” Their work was extended further by Fraser [2], [3]. Murphy [4] presented graphs of minimum probable coverage by sample blocks determined by order statistics of a sample from a population with a continuous but unknown c.d.f. This note extends the results of Murphy, and tabularizes the results in a manner which eliminates or minimizes interpolation, particularly with respect to \(m\), in a large number of cases. The form of Table I parallels the tables of Eisenhart, Hastay and Wallis [1] “Tolerance Factors for Normal Distributions.”

Let \(P\) represent the proportion of the population between the \(r^{th}\) smallest and the \(s^{th}\) largest value in a random sample of \(n\) from a population having a continuous but unknown distribution function. Table I gives the largest value of \(m = r + s\) such that we have confidence of at least that 100 \(P\) percent of the population lies between the \(r^{th}\) smallest and \(s^{th}\) largest in the sample. Note, that we may choose any \(r, s \geq 0\) such that \(r + s = m\). We must, of course, decide upon the values of \(r\) and \(s\) independently of the observations in the sample. We obtain one-sided confidence intervals when we use \(r = 0\) or \(s = 0\) for a given \(m\). The values of \(m\) are the largest such that

\[
\gamma \leq I_{1-P}(m, n - \hat{m} + 1)
\]

where \(I\) is the incomplete Beta function tabulated in [5] and [7].

Received March 21, 1957; revised January 15, 1958.

1 Part of this work was done while the author was a guest worker at the National Bureau of Standards.