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Using 1.6 and the linear independence of the B’s, 2.1 yields
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If C has m* distinct non-zero characteristic roots, e;, €2, + -+ , ems , then we
may write

C = e,E(e1) + e:E(ex) + -+ + emsE(ems).

Now using Theorem 2 we have
TuroREM 3. The C mairiz of a P.B.L.B. (m) may be expressed as a linear func-
tion of the m + 1 commutative and linearly independent matrices By ,By, -+« , Bm .
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1. Introduction. Let F(z) be a distribution function, that is, a non-decreasing
right-continuous function such that F(—») = 0 and F(+4 ») = 1. The char-
acteristic function

L) o0 = [ : & dF (z)

of the distribution function F(z) is defined for all real ¢£. A characteristic function
is said to be an analytic characteristic function if it coincides with a regular ana-
lytic function ¢(z) in some neighborhood of the origin in the complex z-plane.
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