A THREE-SAMPLE KOLMOGOROV-SMIRNOV TEST

BY HERBERT T. DAVID

Iowa State College

1. Introduction. In 1951, Gnedenko and Korolyuk published an elegant derivation ([6])¹ of the null distribution of the Kolmogorov-Smirnov statistic $D_{2,n}$ for two samples of equal size n. The statistic $D_{2,n}$ is given by

(1)
$$D_{2,n} = \sup_{t} |F_{2,n}(t) - F_{1,n}(t)|,$$

where $F_{i,n}(t)$ is the sample cumulative distribution function for the *i*th sample. The distribution derived by Gnedenko and Korolyuk is

(2)
$$\Pr\left\{D_{2,n} \ge \frac{l}{n}\right\} = 2\binom{2n}{n}^{-1} \sum_{i=1}^{\lfloor n/l \rfloor} (-1)^{i+1} \binom{2n}{n-il}.$$

Since

(3)
$$\lim_{n\to\infty} \frac{\binom{2n}{n-k\sqrt{n}}}{\binom{2n}{n}} = e^{-k^2},$$

(2) easily leads to the familiar asymptotic result

(4)
$$\lim_{n\to\infty} \Pr\left\{n^{1/2}D_{2,n} \ge \lambda\right\} = 2\sum_{i=1}^{\infty} (-1)^{i+1}e^{-(i\lambda)^2}.$$

Gnedenko and Korolyuk's proof hinges on the fact that, in the null case (for two samples drawn from the same continuous distribution), $\Pr\{D_{2,n} \ge l/n\}$ equals the probability that the maximum deviation from the origin of a certain random walk in the line is at least l. The random paths involved in this random walk start at the origin, and consist of 2n unit steps, n to the left and n to the right, with all possible permutations of left and right steps equally likely. The probability $\Pr\{D_{2,n} \ge l/n\}$ is thus equal to, say, $M / \binom{2n}{n}$, where $\binom{2n}{n}$ is the total number of equally likely paths, and M is the number of these paths with maximum deviation from the origin at least l. M can be computed by the reflection principle in the line ([2], [1]), leading to (2).

In this paper I show that the null distribution of the three-sample extension $D_{3,n}$ (see (6) below) of $D_{2,n}$ can be derived by extending the geometric approach of [6] from the line to the plane.

Received October 21, 1957; revised February 25, 1958.

¹ The review of this paper in Mathematical Reviews [3] was brought to my attention by Murray Rosenblatt.