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The distribution of exceedances may be defined by the following formula (see,
e.g. [2]), where x corresponds to the number of exceedances
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given natural numbers.
There are known—among others—the following two fundamentally equivalent
models or representations of this distribution [2], [3], [4]:

A. Exceedances. We have two random samples of sizes n; and n, , respectively,
from the same continuous distribution. The number of exceedances is defined
as the number of elements of the second sample which surpass at least
n; — m -+ 1 elements of the first, for a fixed natural number m =< n; . The dis-
tribution of the number of exceedances is given by formula (1).

B. Pascal model without replacement. An urn contains n; black and n. red balls.
We draw balls from the urn until we have drawn m black balls. The distribution
of the number of the red balls drawn is given by (1).

In [1], Gumbel proved that, for n; = m., the median of the number of ex-
ceedances is m — 1, more precisely that
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In this paper a simple proof of this result is given.
We shall, in fact, prove the following more general result:

(3) W(n17mlyn2)m—1)+W(n‘2,m2)n17m1_1)=1~

In terms of model A, the m;th element of the first sample exceeds the math
element of the second sample if and only if the number of exceedances (y) takes
one of the values 0, 1, -+ - , my — 1, these possibilities being mutually exclusive.
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