THE NON-ABSOLUTE CONVERGENCE OF GIL-PELAEZ' INVERSION INTEGRAL

By J. G. WENDEL

University of Michigan

Let $\varphi(t)$ be the characteristic function corresponding to a distribution function $F(x) = \{F(x-0) + F(x+0)\}/2$,

(1)
$$\varphi(t) = \int_{-\infty}^{+\infty} \exp(itx) dF(x).$$

Gil-Pelaez [1] has given an attractive expression for the inverse correspondence, which we may write in the form

(2)
$$F(x) = \frac{1}{2} - \frac{1}{\pi} \int_{-0}^{-\infty} \operatorname{Im} e^{-itx} \varphi(t) / t \, dt;$$

the arrows signify that the integral might be improper at either or both limits, as is implicit in Gil-Pelaez' proof.

Specializing to the case x = 0 we reduce (2) to the expression

(3)
$$F(0) = \frac{1}{2} - \frac{1}{\pi} \int_{-0}^{\infty} \operatorname{Im} \varphi(t) / t \, dt,$$

from which (3) may be recovered by a translation of the random variable.

Trivial instances where the integral in (3) is improper at the upper limit abound, e.g., $\varphi(t) = \exp(iat)$, $a \neq 0$. The lower limit is, however, a more delicate matter; although an isolated example of nonabsolute convergence at t = 0 may be drawn from ([4], Section 6.11), the "standard" distributions do not exhibit the phenomenon. Some misunderstanding on this point may have crept into the literature ([3], pp. 402, 411), and it is therefore thought that the following result may be of interest.

Let \mathfrak{X} be the space of distribution functions F, metrized by

$$\rho(F, G) = ||F - G|| = \text{total variation of } F(x) - G(x).$$

Let α be the subset of α consisting of those F for which (3) is proper at the lower limit.

Theorem. A is a set of the first category in \mathfrak{X} .

As $\mathfrak X$ is a complete metric space, hence of second category, the theorem shows not only that $\mathfrak X-\mathfrak A$ is nonempty, but even that $\mathfrak A$ is a very "sparse" subset of $\mathfrak X$. (Category-theoretic existence proofs are well known in analysis; see, for example, ([2], p. 327), where the method is elegantly used to verify the existence of nowhere differentiable continuous functions.)

In order to prove the result we must show that a is contained in the union of

Received July 2, 1960; revised October 25, 1960.