ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Central Regional Meeting of the Institute, Urbana, Illinois, November 24-25, 1961. Additional abstracts will appear in the March, 1962 issue.)

1. Admissibility of the Optimal Invariant Estimate for a Translation Parameter Under Absolute Error Loss Function. Martin Fox and Herman Rubin, Michigan State University.

Let P satisfy the conditions given by Stein (Ann. Math. Stat., Vol. 30, pp. 970-979) with the following changes: (i) replace Stein's condition (2.6) with the condition

$$\int d\nu(y) \int x^2 d_x P(x, y) < \infty$$

and (ii) add the condition that the unique median of $P(\cdot, y)$ be at 0 for each $y \in \mathcal{Y}$. Then, with absolute error loss function, x is an almost admissible estimate of the translation parameter θ where $(X - \theta, Y)$ has the joint distribution P. The proof is similar to Stein's but somewhat more intricate. Furthermore, under the assumption that $p(\cdot, y)$ is a density for each $y \in \mathcal{Y}$, Stein's proof of admissibility goes through. An example shows that almost admissibility is the best that can be obtained without a density. Farrell (Ithaca meeting, April 20-22, 1961) has shown that, if the median is nonunique, then there is no admissible estimate. The results stated above are still valid if the loss function is weighted by a if the estimate is to the left of θ and by b otherwise. The condition on the median is replaced by the same condition for the $(1 - \alpha)$ th quantile where $\alpha = a/(a + b)$.

2. Unbiased Estimation of Probability Densities (Preliminary report). S. G. Ghurye, University of Minnesota.

Let $y=(y_1\ ,\cdots ,y_n)$ be a sample from a k-dimensional population P, which is an element of a family, $\mathcal P$, of distributions. Let g(x) be a known numerical-valued function on R_k with finite expectation $\omega_P=\int_{R_k}gdP$, for all $P\in\mathcal P$. It is desired to find an unbiased estimate $\Phi(y)$ of ω_P . If $\mathcal P$ is a dominated family with respective probability densities $f_P(x)$ relative to a known measure μ on the k-dimensional Borel sets, then the problem is equivalent to that of finding $\varphi(x,y)$ satisfying $E_P^v\varphi(x,y)=f_P(x)$ for all $x\in R_k$, $P\in\mathcal P$. A number of special cases of the problem have been treated previously [Kolmogorov, Izvest. Akad. Nauk SSSR, Ser. Mat. (1950); Lieberman and Resnikoff, J. Amer. Stat. Assoc. (1955); Washio, Morimoto and Ikeda, Bull. Math. Stat. (1956); Schmetterer, Ann. Math. Stat. (1960)]. We give a detailed discussion for many families of densities, and also consider certain functions of densities.

3. On the Resolution of Statistical Hypotheses. Robert V. Hogg, University of Iowa.

Let ω_0 be the space of a parameter θ . Let ω_i be a subset of ω_{i-1} , $i=1,2,\cdots$, k. We test $\theta \in \omega_k$ against $\theta \in \omega_0 - \omega_k$ by testing iteratively the following hypotheses: $\theta \in \omega_i$ against $\theta \in \omega_{i-1} - \omega_i$, $i=1,2,\cdots$, k. The hypothesis $\theta \in \omega_k$ is accepted if and only if each intermediate hypothesis is accepted. If the test statistic for each intermediate hypothesis $\theta \in \omega_i$ is based on the corresponding likelihood ratio λ_i , we demonstrate why, under fairly general conditions, these test statistics are mutually stochastically independent. This argument is based on an independence theorem which deals with complete sufficient statistics.

1346