ON THE TWO SAMPLE PROBLEM: A HEURISTIC METHOD FOR CONSTRUCTING TESTS¹

By V. P. GODAMBE

Science College, Nagpur, India

1. Introduction. The two-sample problem arises as follows. We are given two independent samples from populations A and B respectively and are required to investigate whether the population A could be considered as identical with B. In the usual terminology of hypothesis testing: Given two independent samples x_1, \dots, x_m and x_{m+1}, \dots, x_{m+n} from populations with unknown cumulative distribution functions F and G respectively, the problem is to test the composite hypothesis

$$H_0:F=G$$

against the alternatives

$$H_1: F \neq G$$

F and G being completely or partially unspecified.

In the following lines we shall discuss a method (subsequently called the V-method), for testing H_0 against H_1 , when F and G are partially specified (the exact meaning of this will be clear later). A test for the situation where F and G are completely unspecified is also put forward.

2. Notation. Suppose F(x) and G(x) to be two cumulative distribution functions on the real axis, $-\infty < x < \infty$, such that their frequency functions exist everywhere. Let x_1, \dots, x_m and x_{m+1}, \dots, x_{m+n} denote independent samples from F and G respectively. Now the combined sample from F and G can be represented as a point

$$\mathbf{x} = (x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n})$$

in the m+n dimensional Euclidean space $\mathfrak X$ of all such points. It follows from the existence of the frequency functions that the probability measure of the set of points $\mathbf x$ in $\mathfrak X$ defined by $x_i=x_j$ for $i\neq j$ is zero. Next we define on $\mathfrak X$ a vector-valued function γ ,

where $\gamma_i(\mathbf{x})$ is the total number of the components of \mathbf{x} less than or equal to x_i . Thus $\gamma_i(\mathbf{x})$ is the rank of x_i in the combined sample $\mathbf{x} = (x_1, \dots, x_{m+n})$. Further we arrange the last n components of \mathbf{x} , that is x_{m+1}, \dots, x_{m+n} , accord-

Received July 24, 1957; revised June 9, 1959.

¹ This work was submitted as a part of a Ph.D. thesis of the London University. The paper was supported (in part) by funds provided under contract AF-18 (600) 456 with the School of Aviation Medicine, USAF, Randolph Air Force Base, Texas.