(Q_2, Q_3, \dots, Q_m) , (Q_3, Q_4, \dots, Q_m) , etc., we finally obtain $$\Pr \{T_{j1} \leq \beta_1, T_{j2} \leq \beta_2, \cdots, T_{jm} \leq \beta_m\} = \prod_{k=1}^m \Pr \{T_{jk} \leq \beta_k\}$$ as was to be shown. Finally, it should be mentioned that if the waiting times are defined so as *not* to include the service times, that is, as the quantities $T_{jk} - s_{jk}$, the question of mutual independence of these quantities for $k = 1, 2, \dots, m$ is apparently an open problem. ## REFERENCES - [1] Reich, Edgar (1957). Waiting times when queues are in tandem. Ann. Math. Statist. 28 768-773. - [2] SAATY, THOMAS L. (1961). Elements of Queueing Theory. McGraw-Hill, New York. - [3] TAKÁCS, LAJOS (1962). Introduction to the Theory of Queues. Oxford Univ. Press, New York. ## A NOTE ON THE RE-USE OF SAMPLES1 By David R. Brillinger² London School of Economics and Political Science There are situations in statistical estimation in which the basic underlying distribution is invariant under some family of transformations. In this note a theorem similar to the Blackwell-Rao Theorem is proved demonstrating that this additional structure can sometimes be exploited to improve an estimator. THEOREM. Consider a random variable x, sample space X, σ -algebra $\mathfrak X$, probability measure $P(\)$. Suppose that G is a set of measure-preserving transformations for the measure P, i.e. P(gA) = P(A) for all A in $\mathfrak X$, g in G. Let $\mu(\)$ be a measure of total mass 1, defined on a σ -algebra $\mathfrak G$ of subsets of G. Let $\phi(x)$ be an estimator such that $\phi(gx)$ is $\mathfrak G \times \mathfrak X$ measurable. (i) If $\phi(x)$ is an unbiased estimator of θ then, $$\gamma(x) = \int_{a} \phi(gx) \ d\mu(g)$$ is also an unbiased estimator of θ . (ii) If $\phi(x)$ takes values in a k-dimensional space and has an associated real-valued, convex, bounded from below loss function $W[\phi(x)]$, such that $W[\phi(gx)]$ is $\mathfrak{G} \times \mathfrak{X}$ measurable then, $R_{\phi} \geq R_{\gamma}$ where R is the associated risk function, and in particular the ellipsoid of concentration of γ is everywhere Received May 15, 1962. ¹ Part of this research was carried out while the author had the support of a Research Training Fellowship of the Social Science Research Council. ² Presently at Bell Telephone Laboratories, Murray Hill, N. J. and Princeton University.